Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(10): 106804    DOI: 10.1088/1674-1056/23/10/106804
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Analysis of phase shift of surface plasmon polaritons at metallic subwavelength hole arrays

Li Jiang-Yan (李江艳)a, Qiu Kang-Sheng (邱康生)b, Ma Hai-Qiang (马海强)c
a School of Physics, Peking University, Beijing 100871, China;
b Laboratory of Optical Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
c Faculty of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
Abstract  We present the transmission spectra of light transmitting a metallic thin film perforated with differently shaped subwavelength hole arrays, which are calculated by a plane-wave-based transfer matrix method. We analyze the transmission peak positions and the phase-shift angles of different surface plasmon polariton (SPP) modes by using the microscopic theoretical model proposed by Haitao Liu and Philippe Lalanne [Liu Haitao and Lalanne Philippe 2008 Nature 452 728], in which the phase shift properties of the SPPs scattered by the subwavelength hole arrays are considered. The results show that the transmission peak position and the minus phase shift angle of the SPP increase as the hole size increases. On the other hand, the effective dielectric constant of the metallic film can be deduced by the microscopic theoretical model.
Keywords:  surface plasmon resonance      phase shift      metallic nanostructure  
Received:  29 December 2013      Revised:  18 April 2014      Accepted manuscript online: 
PACS:  68.47.De (Metallic surfaces)  
  79.60.Jv (Interfaces; heterostructures; nanostructures)  
  81.30.Bx (Phase diagrams of metals, alloys, and oxides)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2010CB23202) and the National Natural Science Foundation of China (Grant No. 10805006).
Corresponding Authors:  Li Jiang-Yan     E-mail:  yanr163@163.com
About author:  68.47.De; 79.60.Jv; 81.30.Bx

Cite this article: 

Li Jiang-Yan (李江艳), Qiu Kang-Sheng (邱康生), Ma Hai-Qiang (马海强) Analysis of phase shift of surface plasmon polaritons at metallic subwavelength hole arrays 2014 Chin. Phys. B 23 106804

[1]Gresillon S, Aigouy L, Boccara A C, Rivoal J C, Quelin X, Desmarest C and Gadenne P 1999 Phys. Rev. Lett. 82 4520
[2]Hu B, Liu J, Gu B Y, Di S, Sun X D and Wang S Q 2007 J. Opt. Soc. Am. A 24 1084A1
[3]Zayats A V and Smolyaninov Igor I 2003 J. Opt. A: Pure Appl. Opt. 5 S16
[4]Tanaka Kazuo and Tanaka Masahiro 2004 J. Opt. Soc. Am. A 21 2344
[5]Onuta Tiberiu-Dan, Waegele Matthias, DuFort Christopher C, Schaich Willianm L and Dragnea Bogdan 2007 Nano Lett. 7 557
[6]Luo Xianggang and Ishihara Teruya 2004 Appl. Phys. Lett. 84 4780
[7]Berini P, Charbonneau R, Lahoun N and Mattiussi G 2005 J. Appl. Phys. 98 043109
[8]Yin Leilei, Valsko-Vlasov Vitali K, Pearson John, Hiller Jon M, Hua Jiong, Welp Ulrich, Brown Dennis E and Kimball Clyde W 2005 Nano Lett. 5 1399
[9]Fang Nicholas, Lee Hyesog, Sun Cheng and Zhang Xiang 2005 Science 308 534
[10]Ozbay Ekmel 2006 Science 311 189
[11]Jackel F, Kinkhabwala A A and Moerner W E 2007 Chem. Phys. Lett. 446 339
[12]Felidj N, Aubard J, Levi G, Krenn J R, Salerno M, Schider G, Lamprecht B, Leitner A and Aussenegg F R 2002 Phys. Rev. B 65 075419
[13]Laurent Guillarme, Felidj Nordin, Grand Johan, Aubard Jean, Levi Georges, Hohenar Andreas, Aussenegg Frantz R and Krenn Joachim R 2006 Phys. Rev. B 73 245417
[14]Gunnarsson L, Bjerneld E J, Petronis H Xu, Petronis S, Kasemo B and Kall M 2001 Appl. Phys. Lett. 78 802
[15]Haes Amanda J, Zou Shengli, Zhao Jing, Schatz George C and Duyne Richard P Van Duyne 2006 J. Am. Chem, Soc. 128 10905
[16]Guo H C, Nau D, Radke A, Zhang X P, Stodolka J, Yang X L, Tikhodeev S G, Gippius N A and Giessen H 2005 Appl. Phys. B 81 271
[17]Olofsson Linda, Rindzevicius Tomas, Pfeiffer Indriati, Kall Mikael and Hook Fredic 2003 Langmuir 19 10414
[18]Nelson Bryce P, Grimsrud Timothy E, Liles Mark R, Goodman Robert M and Corn Robert M 2001 Anal. Chem. 73 1
[19]Okamoto Takayuki, Yamaguchi Ichirou and Kobayashi Tetsushi 2000 Opt. Lett. 25 372
[20]Haes Amanda J, Zou Shengli, Schatz George C and Van Duyne Richard P 2004 J. Phys. Chem. B 108 6961
[21]Ebbesen T W, Lezec H J, Ghaemi H F, Thio T and Wolff P A 1998 Nature 391 667
[22]Yin L, Vlasko-vlasov V K, Rydh A, Pearson J, Welp U, Chang S H, Gray S K, Schatz G C, Brown D B and Kimball C Wl 2004 Appl. Phys. Lett. 85 467
[23]Aigouy L, Lalanne P, Hugonin J P, Julie G, Mathet V and Mortier M 2007 Phys. Rev. Lett. 98 153902-1
[24]Schouten H F, Kuzmin N, Dubois G, Visser T D, Gbur G, Alkemade P F A, Blok H, Hooft G W't, Lenstra D and Eliel E R 2005 Phys. Rev. Lett. 94 053901
[25]Kwak Eun-Soo, Henzie Joel, Chang Shih-Hui, Gray Stephen K, Schatz George C and Odom Teri W 2005 Nano Lett. 5 1963
[26]Tetz Kevin A, Rokitski Rostislav, Nezhad Maziar and Fainman Yeshaiahu 2005 Appl. Phys. Lett. 86 111110
[27]Altewischer E, van Exter M P and Woerdman J P 2002 Nature 418 304
[28]Sun M, Liu R J, Li Z Y, Cheng B Y, Zhang D Z, Yang H F and Jin A Z 2006 Chin. Phys. 15 1591
[29]Przybilla F, Genet C and Ebbesen T W 2006 Appl. Phys. Lett. 89 121115
[30]Ckark A W, Sheridan A K, Glidle A, Cumming D R S and Cooper J M 2007 Appl. Phys. Lett. 91 093109
[31]Liu Haitao and Lalanne Philippe 2008 Nature 452 728
[32]Palik E D 1985 Handbook of Optical Constant of Solids (Orlando: Academic Press)
[33]Li Z Y and Ho K M 2003 Phys. Rev. B 68 245117
[34]Li Z Y and Ho K M 2003 Phys. Rev. B 67 165104
[35]Li J Y, Li Z Y, Yang H F and Jin A Z 2008 J. Appl. Phys. 104 114303
[36]Li J Y, Hua Y L, Fu J X and Li Z Y 2010 J. Appl. Phys. 107 073101
[1] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[2] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[3] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[4] Numerical study of a highly sensitive surface plasmon resonance sensor based on circular-lattice holey fiber
Jian-Fei Liao(廖健飞), Dao-Ming Lu(卢道明), Li-Jun Chen(陈丽军), and Tian-Ye Huang(黄田野). Chin. Phys. B, 2022, 31(6): 060701.
[5] Three-step self-calibrating generalized phase-shifting interferometry
Yu Zhang(张宇). Chin. Phys. B, 2022, 31(3): 030601.
[6] Multi-frequency focusing of microjets generated by polygonal prisms
Yu-Jing Yang(杨育静), De-Long Zhang(张德龙), and Ping-Rang Hua(华平壤). Chin. Phys. B, 2022, 31(3): 034201.
[7] Sensitivity improvement of aluminum-based far-ultraviolet nearly guided-wave surface plasmon resonance sensor
Tianqi Li(李天琦), Shujing Chen(陈淑静), and Chengyou Lin(林承友). Chin. Phys. B, 2022, 31(12): 124208.
[8] Experimental demonstration of a fast calibration method for integrated photonic circuits with cascaded phase shifters
Junqin Cao(曹君勤), Zhixin Chen(陈志歆), Yaxin Wang(王亚新), Tianfeng Feng(冯田峰), Zhihao Li(李志浩), Zeyu Xing(邢泽宇), Huashan Li(李华山), and Xiaoqi Zhou(周晓祺). Chin. Phys. B, 2022, 31(11): 114204.
[9] Photonic spin Hall effect and terahertz gas sensor via InSb-supported long-range surface plasmon resonance
Jie Cheng(程杰), Gaojun Wang(王高俊), Peng Dong(董鹏), Dapeng Liu(刘大鹏), Fengfeng Chi(迟逢逢), and Shengli Liu(刘胜利). Chin. Phys. B, 2022, 31(1): 014205.
[10] A multi-band and polarization-independent perfect absorber based on Dirac semimetals circles and semi-ellipses array
Zhiyou Li(李治友), Yingting Yi(易颖婷), Danyang Xu(徐丹阳), Hua Yang(杨华), Zao Yi(易早), Xifang Chen(陈喜芳), Yougen Yi(易有根), Jianguo Zhang(张建国), and Pinghui Wu(吴平辉). Chin. Phys. B, 2021, 30(9): 098102.
[11] Surface plasmon polaritons frequency-blue shift in low confinement factor excitation region
Ling-Xi Hu(胡灵犀), Zhi-Qiang He(何志强), Min Hu(胡旻), and Sheng-Gang Liu(刘盛纲). Chin. Phys. B, 2021, 30(8): 084102.
[12] A low noise, high fidelity cross phase modulation in multi-level atomic medium
Liangwei Wang(王亮伟), Jia Guan(关佳), Chengjie Zhu(朱成杰), Runbing Li(李润兵), and Jing Shi(石兢). Chin. Phys. B, 2021, 30(11): 114204.
[13] Optical absorption tunability and local electric field distribution of gold-dielectric-silver three-layered cylindrical nanotube
Ye-Wan Ma(马业万), Zhao-Wang Wu(吴兆旺), Yan-Yan Jiang(江燕燕), Juan Li(李娟), Xun-Chang Yin(尹训昌), Li-Hua Zhang(章礼华), and Ming-Fang Yi(易明芳). Chin. Phys. B, 2021, 30(11): 114207.
[14] Controlled plasmon-enhanced fluorescence by spherical microcavity
Jingyi Zhao(赵静怡), Weidong Zhang(张威东), Te Wen(温特), Lulu Ye(叶璐璐), Hai Lin(林海), Jinglin Tang(唐靖霖), Qihuang Gong(龚旗煌), and Guowei Lyu(吕国伟). Chin. Phys. B, 2021, 30(11): 114215.
[15] Cascaded dual-channel fiber SPR temperature sensor based on liquid and solid encapsulations
Yong Wei(魏勇), Lingling Li(李玲玲), Chunlan Liu(刘春兰), Jiangxi Hu(胡江西), Yudong Su(苏于东), Ping Wu(吴萍), and Xiaoling Zhao(赵晓玲). Chin. Phys. B, 2021, 30(10): 100701.
No Suggested Reading articles found!