CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Analysis of phase shift of surface plasmon polaritons at metallic subwavelength hole arrays |
Li Jiang-Yan (李江艳)a, Qiu Kang-Sheng (邱康生)b, Ma Hai-Qiang (马海强)c |
a School of Physics, Peking University, Beijing 100871, China; b Laboratory of Optical Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; c Faculty of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China |
|
|
Abstract We present the transmission spectra of light transmitting a metallic thin film perforated with differently shaped subwavelength hole arrays, which are calculated by a plane-wave-based transfer matrix method. We analyze the transmission peak positions and the phase-shift angles of different surface plasmon polariton (SPP) modes by using the microscopic theoretical model proposed by Haitao Liu and Philippe Lalanne [Liu Haitao and Lalanne Philippe 2008 Nature 452 728], in which the phase shift properties of the SPPs scattered by the subwavelength hole arrays are considered. The results show that the transmission peak position and the minus phase shift angle of the SPP increase as the hole size increases. On the other hand, the effective dielectric constant of the metallic film can be deduced by the microscopic theoretical model.
|
Received: 29 December 2013
Revised: 18 April 2014
Accepted manuscript online:
|
PACS:
|
68.47.De
|
(Metallic surfaces)
|
|
79.60.Jv
|
(Interfaces; heterostructures; nanostructures)
|
|
81.30.Bx
|
(Phase diagrams of metals, alloys, and oxides)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2010CB23202) and the National Natural Science Foundation of China (Grant No. 10805006). |
Corresponding Authors:
Li Jiang-Yan
E-mail: yanr163@163.com
|
About author: 68.47.De; 79.60.Jv; 81.30.Bx |
Cite this article:
Li Jiang-Yan (李江艳), Qiu Kang-Sheng (邱康生), Ma Hai-Qiang (马海强) Analysis of phase shift of surface plasmon polaritons at metallic subwavelength hole arrays 2014 Chin. Phys. B 23 106804
|
|
| [1] | Gresillon S, Aigouy L, Boccara A C, Rivoal J C, Quelin X, Desmarest C and Gadenne P 1999 Phys. Rev. Lett. 82 4520
|
|
| [2] | Hu B, Liu J, Gu B Y, Di S, Sun X D and Wang S Q 2007 J. Opt. Soc. Am. A 24 1084A1
|
|
| [3] | Zayats A V and Smolyaninov Igor I 2003 J. Opt. A: Pure Appl. Opt. 5 S16
|
|
| [4] | Tanaka Kazuo and Tanaka Masahiro 2004 J. Opt. Soc. Am. A 21 2344
|
|
| [5] | Onuta Tiberiu-Dan, Waegele Matthias, DuFort Christopher C, Schaich Willianm L and Dragnea Bogdan 2007 Nano Lett. 7 557
|
|
| [6] | Luo Xianggang and Ishihara Teruya 2004 Appl. Phys. Lett. 84 4780
|
|
| [7] | Berini P, Charbonneau R, Lahoun N and Mattiussi G 2005 J. Appl. Phys. 98 043109
|
|
| [8] | Yin Leilei, Valsko-Vlasov Vitali K, Pearson John, Hiller Jon M, Hua Jiong, Welp Ulrich, Brown Dennis E and Kimball Clyde W 2005 Nano Lett. 5 1399
|
|
| [9] | Fang Nicholas, Lee Hyesog, Sun Cheng and Zhang Xiang 2005 Science 308 534
|
|
| [10] | Ozbay Ekmel 2006 Science 311 189
|
|
| [11] | Jackel F, Kinkhabwala A A and Moerner W E 2007 Chem. Phys. Lett. 446 339
|
|
| [12] | Felidj N, Aubard J, Levi G, Krenn J R, Salerno M, Schider G, Lamprecht B, Leitner A and Aussenegg F R 2002 Phys. Rev. B 65 075419
|
|
| [13] | Laurent Guillarme, Felidj Nordin, Grand Johan, Aubard Jean, Levi Georges, Hohenar Andreas, Aussenegg Frantz R and Krenn Joachim R 2006 Phys. Rev. B 73 245417
|
|
| [14] | Gunnarsson L, Bjerneld E J, Petronis H Xu, Petronis S, Kasemo B and Kall M 2001 Appl. Phys. Lett. 78 802
|
|
| [15] | Haes Amanda J, Zou Shengli, Zhao Jing, Schatz George C and Duyne Richard P Van Duyne 2006 J. Am. Chem, Soc. 128 10905
|
|
| [16] | Guo H C, Nau D, Radke A, Zhang X P, Stodolka J, Yang X L, Tikhodeev S G, Gippius N A and Giessen H 2005 Appl. Phys. B 81 271
|
|
| [17] | Olofsson Linda, Rindzevicius Tomas, Pfeiffer Indriati, Kall Mikael and Hook Fredic 2003 Langmuir 19 10414
|
|
| [18] | Nelson Bryce P, Grimsrud Timothy E, Liles Mark R, Goodman Robert M and Corn Robert M 2001 Anal. Chem. 73 1
|
|
| [19] | Okamoto Takayuki, Yamaguchi Ichirou and Kobayashi Tetsushi 2000 Opt. Lett. 25 372
|
|
| [20] | Haes Amanda J, Zou Shengli, Schatz George C and Van Duyne Richard P 2004 J. Phys. Chem. B 108 6961
|
|
| [21] | Ebbesen T W, Lezec H J, Ghaemi H F, Thio T and Wolff P A 1998 Nature 391 667
|
|
| [22] | Yin L, Vlasko-vlasov V K, Rydh A, Pearson J, Welp U, Chang S H, Gray S K, Schatz G C, Brown D B and Kimball C Wl 2004 Appl. Phys. Lett. 85 467
|
|
| [23] | Aigouy L, Lalanne P, Hugonin J P, Julie G, Mathet V and Mortier M 2007 Phys. Rev. Lett. 98 153902-1
|
|
| [24] | Schouten H F, Kuzmin N, Dubois G, Visser T D, Gbur G, Alkemade P F A, Blok H, Hooft G W't, Lenstra D and Eliel E R 2005 Phys. Rev. Lett. 94 053901
|
|
| [25] | Kwak Eun-Soo, Henzie Joel, Chang Shih-Hui, Gray Stephen K, Schatz George C and Odom Teri W 2005 Nano Lett. 5 1963
|
|
| [26] | Tetz Kevin A, Rokitski Rostislav, Nezhad Maziar and Fainman Yeshaiahu 2005 Appl. Phys. Lett. 86 111110
|
|
| [27] | Altewischer E, van Exter M P and Woerdman J P 2002 Nature 418 304
|
|
| [28] | Sun M, Liu R J, Li Z Y, Cheng B Y, Zhang D Z, Yang H F and Jin A Z 2006 Chin. Phys. 15 1591
|
|
| [29] | Przybilla F, Genet C and Ebbesen T W 2006 Appl. Phys. Lett. 89 121115
|
|
| [30] | Ckark A W, Sheridan A K, Glidle A, Cumming D R S and Cooper J M 2007 Appl. Phys. Lett. 91 093109
|
|
| [31] | Liu Haitao and Lalanne Philippe 2008 Nature 452 728
|
|
| [32] | Palik E D 1985 Handbook of Optical Constant of Solids (Orlando: Academic Press)
|
|
| [33] | Li Z Y and Ho K M 2003 Phys. Rev. B 68 245117
|
|
| [34] | Li Z Y and Ho K M 2003 Phys. Rev. B 67 165104
|
|
| [35] | Li J Y, Li Z Y, Yang H F and Jin A Z 2008 J. Appl. Phys. 104 114303
|
|
| [36] | Li J Y, Hua Y L, Fu J X and Li Z Y 2010 J. Appl. Phys. 107 073101
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|