|
|
Modeling the interaction of nitrate anions with ozone and atmospheric moisture |
A. Y. Galashev |
Institute of High Temperature Electrochemistry, Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russia |
|
|
Abstract The molecular dynamics method is used to investigate the interaction between one-six nitrate anions and water clusters absorbing six ozone molecules. The infrared (IR) absorption and reflection spectra are reshaped significantly, and new peaks appear at Raman spectra due to the addition of ozone and nitrate anions to the disperse water system. After ozone and nitrate anions are captured, the average (in frequency) IR reflection coefficient of the water disperse system increased drastically and the absorption coefficient fell.
|
Received: 28 April 2015
Revised: 08 June 2015
Accepted manuscript online:
|
PACS:
|
36.40.Mr
|
(Spectroscopy and geometrical structure of clusters)
|
|
36.20.Ng
|
(Vibrational and rotational structure, infrared and Raman spectra)
|
|
92.70.Cp
|
(Atmosphere)
|
|
92.70.Er
|
(Biogeochemical processes)
|
|
Corresponding Authors:
A. Y. Galashev
E-mail: alexander-galashev@yandex.ru
|
Cite this article:
A. Y. Galashev Modeling the interaction of nitrate anions with ozone and atmospheric moisture 2015 Chin. Phys. B 24 103601
|
[1] |
Golobokova L P, Latysheva I V, Mordvinov V I, Khodzher T V, Obolkin V A and Potemkin V L 2005 Atmos. Oceanic Opt. 18 616
|
[2] |
Foster K L, Plastridge R A, Bottenheim J W, Shepson P B, Finlayson-Pitts B J and Spicer C W 2001 Science 291 471
|
[3] |
Salvador P, Curtis J E, Tobias D J and Jungwirth P 2003 Phys. Chem. Chem. Phys. 5 3752
|
[4] |
Galashev A E, Rakhmanova O R and Novruzova O A 2011 High Temp. 49 193
|
[5] |
Galashev A E, Rakhmanova O R and Novruzova O A 2011 High Temp. 49 528
|
[6] |
Galashev A E, Rakhmanova O R, Galasheva O A and Novruzov A N 2006 Phase Transitions 79 911
|
[7] |
Galashev A E, Chukanov V N, Novruzov A N and Novruzova O A 2006 High Temp. 44 364
|
[8] |
Galashev A Y 2010 Molecular Simulation 36 273
|
[9] |
Chukanov V N and Galashev A E 2008 Doklady Phys. Chem. 421 226
|
[10] |
Novruzova O A, Chukanov V N and Galashev A E 2006 Colloid Journal 68 462
|
[11] |
Galashev A E, Rakhmanova O R and Novruzova O A and Galasheva A A 2009 Colloid Journal 71 745
|
[12] |
Galashev A Y 2011 Can. J. Chem. 89 524
|
[13] |
Jorgensen W L, Chandrasekhar J, Madura J D, Impey R W and Klein M L 1983 J. Chem. Phys. 79 926
|
[14] |
Dang L X and Chang T M 1997 J. Chem. Phys. 106 8149
|
[15] |
Dang L X, Chang T M, Roeselova M, Garrett B C and Tobias D J 2006 J. Chem. Phys. 124 066101
|
[16] |
Shem M, Xie Y, Schaefer H F and Deakyne C A 1991 Chem. Phys. 151 187
|
[17] |
Hunt S W, Roeselova M, Wang W, Wingen L M, Knipping E M, Tobias D J, Dabdub D and Finlayson-Pitts B J 2004 J. Phys. Chem. A 108 11559
|
[18] |
Nikol'skii B P (Ed.) 1966 A Chemist's Handbook (Leningrad: Khimiya) 1 p. 337
|
[19] |
Stillinger F H and David C W 1978 J. Chem. Phys. 69 1473
|
[20] |
Vostrikov A A, Dubov D Yu and Drozdov S V 2008 Tech. Phys. Lett. 34 221
|
[21] |
Galashev A Y 2013 Chin. Phys. B 22 073601
|
[22] |
Galashev A Y 2013 Chin. Phys. B 22 123602
|
[23] |
Lemberg H L and Stillinger F H 1975 J. Chem. Phys. 62 1677
|
[24] |
Rahman A, Stillinger F H and Lemberg H L 1975 J. Chem. Phys. 63 5223
|
[25] |
Saint-Martin H, Hess B and Berendsen H J C 2004 J. Chem. Phys. 120 11133
|
[26] |
Haile J M 1992 Molecular Dynamics Simulation: Elementary Methods (New York: Wiley) p. 161
|
[27] |
Koshlyakov V N 1985 Problems in the Dynamics of a Solid Body and the Applied Theory of Gyroscopes (Moscow: Nauka) p. 16
|
[28] |
Sonnenschein R 1985 J. Comput. Phys. 59 347
|
[29] |
Bosma W B, Fried L E and Mukamel S 1993 J. Chem. Phys. 98 4413
|
[30] |
Landau L D and Lifshitz E M 1982 Course of Theoretical Physics. Electrodynamics of Continuous Media (Moscow: Nauka) 8 p. 407
|
[31] |
Goggin P L, Carr C 1986 Water and Aqueous Solutions (Bristol-Boston: Adam Hilger) 37 p. 149
|
[32] |
Wagner G, Birk M, Schreier F and Flaud J M 2002 J. Geophys. Res. 107 22
|
[33] |
Goldman A, Murcray F J, Blatherwick R D, Kosters J J, Murcray D G, Rinsland C P, Flaud J M and Camy-Peyret C 1992 J. Geophys. Res. 97 2561
|
[34] |
Kraemer D, Cowan M L, Paarmann A, Huse N, Nibbering E T J, Elsaesser T and Miller R J D 2008 Proc. Natl. Acad. Sci. USA 105 437
|
[35] |
Rinsland C P, Flaud J-M, Perrin A, Birk M, Wagner G, Goldman A, Barbe A, Deacker-Barilly M R, Mikhailenko S N, Tyuterev Vl G, Smith M A H, Malathy Devi V, Benner D C, Schreier F, Chance K V, Orphal J and Stephen T M 2003 J. Quantum Spectrosc. Radiat. Transfer 82 207
|
[36] |
Novruzova O A and Galashev A E 2008 High Temp. 46 60
|
[37] |
Murphy W F 1977 J. Chem. Phys. 67 5877
|
[38] |
Kamboures M A, van der Veer W, Gerber R B and Phillips L F 2008 Phys. Chem. Chem. Phys. 10 4748
|
[39] |
Wang H 2013 Chin. Phys. B 22 086301
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|