INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Enhanced performances of InGaN/GaN-based blue light-emitting diode with InGaN/AlInGaN superlattice electron blocking layer |
Zhuo Xiang-Jing (卓祥景), Zhang Jun (章俊), Li Dan-Wei (李丹伟), Yi Han-Xiang (易翰翔), Ren Zhi-Wei (任志伟), Tong Jin-Hui (童金辉), Wang Xing-Fu (王幸福), Chen Xin (陈鑫), Zhao Bi-Jun (赵璧君), Wang Wei-Li (王伟丽), Li Shu-Ti (李述体) |
Laboratory of Nano-photonic Functional Materials and Devices, Institute of Opto-electronic Materialsand Technology, South China Normal University, Guangzhou 510631, China |
|
|
Abstract InGaN/AlInGaN superlattice (SL) is designed as the electron blocking layer (EBL) of an InGaN/GaN-based light-emitting diode (LED). The energy band structure, polarization field at the last-GaN-barrier/EBL interface, carrier concentration, radiative recombination rate, electron leakage, internal quantum efficiency (IQE), current-voltage (I-V) performance curve, light output-current (L-I) characteristic, and spontaneous emission spectrum are systematically numerically investigated using APSYS simulation software. It is found that the fabricated LED with InGaN/AlInGaN SL EBL exhibits higher light output power, low forward voltage, and low current leakage compared with those of its counterparts. Meanwhile, the efficiency droop can be effectively mitigated. These improvements are mainly attributed to the higher hole injection efficiency and better electron confinement when InGaN/AlInGaN SL EBL is used.
|
Received: 29 September 2013
Revised: 13 November 2013
Accepted manuscript online:
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51172079), the Science and Technology Program of Guangdong Province, China (Grant Nos. 2010B090400456 and 2010A081002002), and the Science and Technology Program of Guangzhou City, China (Grant No. 11A52091257). |
Corresponding Authors:
Li Shu-Ti
E-mail: lishuti@scnu.edu.cn
|
Cite this article:
Zhuo Xiang-Jing (卓祥景), Zhang Jun (章俊), Li Dan-Wei (李丹伟), Yi Han-Xiang (易翰翔), Ren Zhi-Wei (任志伟), Tong Jin-Hui (童金辉), Wang Xing-Fu (王幸福), Chen Xin (陈鑫), Zhao Bi-Jun (赵璧君), Wang Wei-Li (王伟丽), Li Shu-Ti (李述体) Enhanced performances of InGaN/GaN-based blue light-emitting diode with InGaN/AlInGaN superlattice electron blocking layer 2014 Chin. Phys. B 23 068502
|
[1] |
Akyol F, Nath D N, Krishnamoorthy S, Park P S and Rajan S 2012 Appl. Phys. Lett. 100 111118
|
[2] |
Ling S C, Lu T C, Chang S P, Chen J R, Kuo H C and Wang S C 2010 Appl. Phys. Lett. 96 231101
|
[3] |
Shen Y C, Müller G O, Watanabe S, Gardner N F, Munkholm A and Krames M R 2007 Appl. Phys. Lett. 91 141101
|
[4] |
Gardner N F, Müller G O, Shen Y C, Chen G, Watanabe S, Gotz W and Krames M R 2007 Appl. Phys. Lett. 91 243506
|
[5] |
Kim M H, Schubert M F, Dai Q, Kim J K, Schubert E F, Piprek J and Park Y 2007 Appl. Phys. Lett. 91 183507
|
[6] |
Tong J H, Li S T, Liu T P, Liu C, Wang H L, Wu L J, Zhao B J, Wang X F and Chen X 2012 Chin. Phys. B 21 118502
|
[7] |
Xie J, Ni X, Fan Q, Shimada R, Ozgur U and Morkoc H 2008 Appl. Phys. Lett. 93 121107
|
[8] |
Wu L J, Li S T, Liu C, Wang H L, Lu T P, Zhang K, Xiao G W, Zhou Y G, Zheng S W, Yin Y A and Yang X D 2012 Chin. Phys. B 21 068506
|
[9] |
Monemar B and Sernelius B E 2007 Appl. Phys. Lett. 91 181103
|
[10] |
Wang C H, Chen J R, Chiu C H, Kuo C H, Li Y L, Lu T C and Wang S C 2010 IEEE Photon. Technol. Lett. 22 236
|
[11] |
David A, Grundmann M J, Kaeding J F, Gardner N F, Mihopoulos T G and Krames M R 2008 Appl. Phys. Lett. 92 053502
|
[12] |
Han S H, Lee D Y, Lee S J, Cho C Y, Kwon M K, Lee S P, Noh D Y, Kim D J, Kim Y C and Park S J 2009 Appl. Phys. Lett. 94 231123
|
[13] |
Wang C H, Ke C C, Lee C Y, Chang S P, Chang W T and Li J C 2010 Appl. Phys. Lett. 97 261103
|
[14] |
Wang T H and Xu J L 2013 Chin. Phys. B 22 088504
|
[15] |
Choi S, Kim H J, Kim S S, Liu J, Kim J, Ryou J H, Dupuis R D, Fischer A M and Ponce F A 2010 Appl. Phys. Lett. 96 221105
|
[16] |
Kuo Y K, Tsai M C and Yen S H 2009 Opt. Commun. 282 4252
|
[17] |
Gong C C, Fan G H, Zhang Y Y, Xu Y Q, Liu X P, Zheng S W, Yao G R and Zhou D T 2012 Chin. Phys. B 21 068505
|
[18] |
Liu C, Li S T, Lu T P, Wu L J, Yin Y A, Xiao G W, Zhou Y G and Wang H L 2012 IEEE Photon. Technol. Lett. 24 14
|
[19] |
See http://www.crosslight.com for more information about APSYS by Crosslight Software Inc., Burnaby, Canada
|
[20] |
Tong J H, Zhao B J, Wang X F, Chen X, Ren Z W, Li D W, Zhuo X J, Zhang J, Yi H X and Li S T 2013 Chin. Phys. B 22 068505
|
[21] |
Bernardini F 2007 in Nitride Semiconductor Devices: Principles and Simulation, ed. Piprek J (New York: Wiley), p. 4968
|
[22] |
Vurgaftman I, Meyer J R and Ram-Mohan L R 2001 J. Appl. Phys. 89 5815
|
[23] |
Schubert E F, Grieshaber W and Goepfert I D 1996 Appl. Phys. Lett. 69 3737
|
[24] |
Simon J, Protasenko V, Lian C, Xing H and Jena D 2010 Science 327 60
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|