Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(5): 050305    DOI: 10.1088/1674-1056/23/5/050305
GENERAL Prev   Next  

Thermal entanglement in the mixed three-spin XXZ Heisenberg model on a triangular cell

Seyit Deniz Han, Ekrem Aydiner
Department of Physics, īstanbul University, īstanbul Tr-34134, Turkey
Abstract  We numerically investigate the thermal entanglements of spins (1/2, 1) and spins (1/2, 1/2) in the three-mixed (1/2, 1, 1/2) anisotropic Heisenberg XXZ spin system on a simple triangular cell under an inhomogeneous magnetic field. We show that the external magnetic field induces strong plateau formation in the pairwise thermal entanglement for fixed parameters of the Hamiltonian in the cases of ferromagnetic and antiferromagnetic interactions. We also observe an unexpected critical point at finite temperature in the thermal entanglement of spins (1/2, 1) for the antiferromagnetic case, while the entanglement of spins (1/2, 1) in the ferromagnetic case and the entanglement of spins (1/2, 1/2) in both ferromagnetic and antiferromagnetic cases almost decay exponentially to zero with increasing temperature. The critical point in the entanglement of spins (1/2, 1) in the antiferromagnetic case may be a signature of the quantum phase transition at finite temperature.
Keywords:  quantum entanglement      quantum phase transition      negativity  
Received:  30 July 2013      Revised:  18 October 2013      Accepted manuscript online: 
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  64.70.Tg (Quantum phase transitions)  
Fund: Project supported by īstanbul University (Grant Nos. 19240 and 28432).
Corresponding Authors:  Ekrem Aydiner     E-mail:  ekrem.aydiner@istanbul.edu.tr
About author:  03.65.Ud; 64.70.Tg

Cite this article: 

Seyit Deniz Han, Ekrem Aydiner Thermal entanglement in the mixed three-spin XXZ Heisenberg model on a triangular cell 2014 Chin. Phys. B 23 050305

[1] Nielsen M A and Chuang I A 2000 Quantum Computing and Quantum Information (Cambridge: Cambridge University Press)
[2] Schumacher B 1996 Phys. Rev. A 54 2614
[3] Loss D and Divincenzo D P 1998 Phys. Rev. A 57 120
[4] Bukard G, Loss D and Divincenzo D P 1999 Phys. Rev. B 59 2070
[5] Imamoglu A 1999 Phys. Rev. Lett. 83 4204
[6] Platzman P M and Dykman M I 1999 Science 284 1967
[7] Raussendorf R and Briegel H J 2001 Phys. Rev. Lett. 86 5188
[8] Bennett C H 1993 Phys. Rev. Lett. 70 1895
[9] Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
[10] Divincenzo D P 1995 Science 270 255
[11] Bose S 2007 J. Contemp. Phys. 48 13
[12] Kay A 2010 Int. J. Quantum Inf. 8 641
[13] Christandl M, Datta N, Ekert A and Landahl A J 2004 Phys. Rev. Lett. 92 187902
[14] Ekert A K 1991 Phys. Rev. Lett. 67 661
[15] Deutsch D 1996 Phys. Rev. Lett. 77 2818
[16] Shor P W 1997 SIAM Journal on Computing 26 1484
[17] Grover L K 1997 Phys. Rev. Lett. 79 325
[18] Karlsson A and Bourennane M 1998 Phys. Rev. A 58 4394
[19] Gorbachev V N and Trubilko A 2000 Journal of Experimental and Theoretical Physics 91 894
[20] Hao J C, Li C F and Guo G C 2001 Phys. Rev. A 63 054301
[21] Brub D, DiVincenzo D P, Ekert A, Fuchs C A, Macchiavello C and Simolin J A 1998 Phys. Rev. A 57 2368
[22] Sun Z, Wang X, Hu A and Li Y Q 2006 Physica A 370 483-500
[23] Shun W L, Hui J and Xiang-Mu K 2012 Acta Phys. Sin. 61 240304 (in Chinese)
[24] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[25] Peres A 1996 Phys. Rev. Lett. 77 1413
[26] Horodecki M et al 1996 Phys. Lett. A 223 1
[27] Vidal G and Werner R F 2002 Phys. Rev. A 65 032314
[28] Haldane F D M 1983 Phys. Rev. Lett. 50 1153
[29] Haldane F D M 1983 Phys. Lett. A 93 464
[30] Oshikawa M 1997 Phys. Rev. Lett. 78 1984
[31] Aydiner E 2004 Chin. Phys. Lett. 21 2289
[32] Werlang T, Ribeiro G A P and Rigolin G 2013 Int. J. Mod. Phys. B 27 1345032
[33] Wu L A, Sarandy M S and Lidar D A 2004 Phys. Rev. Lett. 93 250404
[34] Hu Z N, Yi K S and Park K S 2007 J. Phys. A: Math. Theor. 40 7283
[35] Wang X, Fu H and Solomon A I 2001 J. Phys. A: Math. Gen. 34 11307
[36] Abliz A, Cai J T, Zhang G F and Jin G S 2009 J. Phys. B: At. Mol. Opt. Phys. 42 215503
[37] Zhang X X, Yin X C, Sun G and Shan C J 2010 Int. J. Theor. Phys. 49 1507-1515
[38] Li Y C and Lin H Q 2011 Phys. Rev. A 83 052323
[39] Werlang T and Rigolin G 2010 Phys. Rev. A 81 044101
[40] Werlang T, Trippe C, Ribeiro G A P and Rigolin G 2010 Phys. Rev. Lett. 105 095702
[41] Cuccoli A, Taiti A, Vaia R and Verrucchi P 2007 Phys. Rev. B 76 064405
[42] Rong C R, Jie X Y and Xiao M Z 2010 Chin. Phys. B 19 050304
[1] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[2] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[3] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[4] Robustness of two-qubit and three-qubit states in correlated quantum channels
Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Chin. Phys. B, 2022, 31(7): 070302.
[5] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
[6] Dynamical quantum phase transition in XY chains with the Dzyaloshinskii-Moriya and XZY-YZX three-site interactions
Kaiyuan Cao(曹凯源), Ming Zhong(钟鸣), and Peiqing Tong(童培庆). Chin. Phys. B, 2022, 31(6): 060505.
[7] Bright 547-dimensional Hilbert-space entangled resource in 28-pair modes biphoton frequency comb from a reconfigurable silicon microring resonator
Qilin Zheng(郑骑林), Jiacheng Liu(刘嘉成), Chao Wu(吴超), Shichuan Xue(薛诗川), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Xinyao Yu(于馨瑶), Miaomiao Yu(余苗苗), Mingtang Deng(邓明堂), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(2): 024206.
[8] A sport and a pastime: Model design and computation in quantum many-body systems
Gaopei Pan(潘高培), Weilun Jiang(姜伟伦), and Zi Yang Meng(孟子杨). Chin. Phys. B, 2022, 31(12): 127101.
[9] Quantum phase transitions in CePdAl probed by ultrasonic and thermoelectric measurements
Hengcan Zhao(赵恒灿), Meng Lyu(吕孟), Jiahao Zhang(张佳浩), Shuai Zhang(张帅), and Peijie Sun(孙培杰). Chin. Phys. B, 2022, 31(11): 117103.
[10] Protection of entanglement between two V-atoms in a multi-cavity coupling system
Wen-Jin Huang(黄文进), Mao-Fa Fang(方卯发), and Xiong Xu(许雄). Chin. Phys. B, 2022, 31(1): 010301.
[11] Ferromagnetic Heisenberg spin chain in a resonator
Yusong Cao(曹雨松), Junpeng Cao(曹俊鹏), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(9): 090506.
[12] Influences of spin-orbit interaction on quantum speed limit and entanglement of spin qubits in coupled quantum dots
M Bagheri Harouni. Chin. Phys. B, 2021, 30(9): 090301.
[13] Ground-state phase diagram of the dimerizedspin-1/2 two-leg ladder
Cong Fu(傅聪), Hui Zhao(赵晖), Yu-Guang Chen(陈宇光), and Yong-Hong Yan(鄢永红). Chin. Phys. B, 2021, 30(8): 087501.
[14] Nonlocal advantage of quantum coherence and entanglement of two spins under intrinsic decoherence
Bao-Min Li(李保民), Ming-Liang Hu(胡明亮), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(7): 070307.
[15] Entanglement properties of GHZ and W superposition state and its decayed states
Xin-Feng Jin(金鑫锋), Li-Zhen Jiang(蒋丽珍), and Xiao-Yu Chen(陈小余). Chin. Phys. B, 2021, 30(6): 060301.
No Suggested Reading articles found!