|
|
Thermal entanglement in the mixed three-spin XXZ Heisenberg model on a triangular cell |
Seyit Deniz Han, Ekrem Aydiner |
Department of Physics, īstanbul University, īstanbul Tr-34134, Turkey |
|
|
Abstract We numerically investigate the thermal entanglements of spins (1/2, 1) and spins (1/2, 1/2) in the three-mixed (1/2, 1, 1/2) anisotropic Heisenberg XXZ spin system on a simple triangular cell under an inhomogeneous magnetic field. We show that the external magnetic field induces strong plateau formation in the pairwise thermal entanglement for fixed parameters of the Hamiltonian in the cases of ferromagnetic and antiferromagnetic interactions. We also observe an unexpected critical point at finite temperature in the thermal entanglement of spins (1/2, 1) for the antiferromagnetic case, while the entanglement of spins (1/2, 1) in the ferromagnetic case and the entanglement of spins (1/2, 1/2) in both ferromagnetic and antiferromagnetic cases almost decay exponentially to zero with increasing temperature. The critical point in the entanglement of spins (1/2, 1) in the antiferromagnetic case may be a signature of the quantum phase transition at finite temperature.
|
Received: 30 July 2013
Revised: 18 October 2013
Accepted manuscript online:
|
PACS:
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
64.70.Tg
|
(Quantum phase transitions)
|
|
Fund: Project supported by īstanbul University (Grant Nos. 19240 and 28432). |
Corresponding Authors:
Ekrem Aydiner
E-mail: ekrem.aydiner@istanbul.edu.tr
|
About author: 03.65.Ud; 64.70.Tg |
Cite this article:
Seyit Deniz Han, Ekrem Aydiner Thermal entanglement in the mixed three-spin XXZ Heisenberg model on a triangular cell 2014 Chin. Phys. B 23 050305
|
[1] |
Nielsen M A and Chuang I A 2000 Quantum Computing and Quantum Information (Cambridge: Cambridge University Press)
|
[2] |
Schumacher B 1996 Phys. Rev. A 54 2614
|
[3] |
Loss D and Divincenzo D P 1998 Phys. Rev. A 57 120
|
[4] |
Bukard G, Loss D and Divincenzo D P 1999 Phys. Rev. B 59 2070
|
[5] |
Imamoglu A 1999 Phys. Rev. Lett. 83 4204
|
[6] |
Platzman P M and Dykman M I 1999 Science 284 1967
|
[7] |
Raussendorf R and Briegel H J 2001 Phys. Rev. Lett. 86 5188
|
[8] |
Bennett C H 1993 Phys. Rev. Lett. 70 1895
|
[9] |
Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
|
[10] |
Divincenzo D P 1995 Science 270 255
|
[11] |
Bose S 2007 J. Contemp. Phys. 48 13
|
[12] |
Kay A 2010 Int. J. Quantum Inf. 8 641
|
[13] |
Christandl M, Datta N, Ekert A and Landahl A J 2004 Phys. Rev. Lett. 92 187902
|
[14] |
Ekert A K 1991 Phys. Rev. Lett. 67 661
|
[15] |
Deutsch D 1996 Phys. Rev. Lett. 77 2818
|
[16] |
Shor P W 1997 SIAM Journal on Computing 26 1484
|
[17] |
Grover L K 1997 Phys. Rev. Lett. 79 325
|
[18] |
Karlsson A and Bourennane M 1998 Phys. Rev. A 58 4394
|
[19] |
Gorbachev V N and Trubilko A 2000 Journal of Experimental and Theoretical Physics 91 894
|
[20] |
Hao J C, Li C F and Guo G C 2001 Phys. Rev. A 63 054301
|
[21] |
Brub D, DiVincenzo D P, Ekert A, Fuchs C A, Macchiavello C and Simolin J A 1998 Phys. Rev. A 57 2368
|
[22] |
Sun Z, Wang X, Hu A and Li Y Q 2006 Physica A 370 483-500
|
[23] |
Shun W L, Hui J and Xiang-Mu K 2012 Acta Phys. Sin. 61 240304 (in Chinese)
|
[24] |
Wootters W K 1998 Phys. Rev. Lett. 80 2245
|
[25] |
Peres A 1996 Phys. Rev. Lett. 77 1413
|
[26] |
Horodecki M et al 1996 Phys. Lett. A 223 1
|
[27] |
Vidal G and Werner R F 2002 Phys. Rev. A 65 032314
|
[28] |
Haldane F D M 1983 Phys. Rev. Lett. 50 1153
|
[29] |
Haldane F D M 1983 Phys. Lett. A 93 464
|
[30] |
Oshikawa M 1997 Phys. Rev. Lett. 78 1984
|
[31] |
Aydiner E 2004 Chin. Phys. Lett. 21 2289
|
[32] |
Werlang T, Ribeiro G A P and Rigolin G 2013 Int. J. Mod. Phys. B 27 1345032
|
[33] |
Wu L A, Sarandy M S and Lidar D A 2004 Phys. Rev. Lett. 93 250404
|
[34] |
Hu Z N, Yi K S and Park K S 2007 J. Phys. A: Math. Theor. 40 7283
|
[35] |
Wang X, Fu H and Solomon A I 2001 J. Phys. A: Math. Gen. 34 11307
|
[36] |
Abliz A, Cai J T, Zhang G F and Jin G S 2009 J. Phys. B: At. Mol. Opt. Phys. 42 215503
|
[37] |
Zhang X X, Yin X C, Sun G and Shan C J 2010 Int. J. Theor. Phys. 49 1507-1515
|
[38] |
Li Y C and Lin H Q 2011 Phys. Rev. A 83 052323
|
[39] |
Werlang T and Rigolin G 2010 Phys. Rev. A 81 044101
|
[40] |
Werlang T, Trippe C, Ribeiro G A P and Rigolin G 2010 Phys. Rev. Lett. 105 095702
|
[41] |
Cuccoli A, Taiti A, Vaia R and Verrucchi P 2007 Phys. Rev. B 76 064405
|
[42] |
Rong C R, Jie X Y and Xiao M Z 2010 Chin. Phys. B 19 050304
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|