Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(5): 050304    DOI: 10.1088/1674-1056/23/5/050304
GENERAL Prev   Next  

Thermal quantum and total correlations in spin-1 bipartite system

Qiu Liang (仇亮)a, Ye Bin (叶宾)b
a College of Sciences, China University of Mining and Technology, Xuzhou 221116, China;
b School of Information and Electrical Engineering, China University of Mining and Technology, Xuzhou 221116, China
Abstract  Thermal quantum and total correlations of a two spin-1 Ising model in the presence of an external homogeneous magnetic field and the Dzyaloshinski-Moriya (DM) interaction are investigated. The result indicates that the DM interaction plays a leading role in the quantum correlation measured by measurement-induced disturbance except for the region with small DM interaction and low temperature, while the DM interaction and the external magnetic field play competing roles in the negativity. The thermal total correlations measured by an alternative new measure defined in terms of the Wigner-Yanase skew information and the quantum mutual information display differences in the same region.
Keywords:  two-qutrit system      measurement-induce disturbance      negativity  
Received:  01 August 2013      Revised:  14 October 2013      Accepted manuscript online: 
PACS:  03.67.Ud  
  75.10.Jm (Quantized spin models, including quantum spin frustration)  
  65.90.+i (Other topics in thermal properties of condensed matter)  
Fund: Project supported by the Fundamental Research Funds for the Central Universities of China (Grant No. 2012QNA37).
Corresponding Authors:  Qiu Liang     E-mail:  lqiu@cumt.edu.cn
About author:  03.67.Ud; 75.10.Jm; 65.90.+i

Cite this article: 

Qiu Liang (仇亮), Ye Bin (叶宾) Thermal quantum and total correlations in spin-1 bipartite system 2014 Chin. Phys. B 23 050304

[1] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
[2] Amico L, Fazio R, Osterloh A and Vedral V 2008 Rev. Mod. Phys. 80 517
[3] Piani M, Horodecki P and Horodecki P 2008 Phys. Rev. Lett. 100 090502
[4] Luo S L and Zhang Q 2008 J. Stat. Phys. 131 1169
[5] Li N and Luo S L 2008 Phys. Rev. A 78 024303
[6] Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901
[7] Henderson L and Vedral V 2001 J. Phy. A 34 6899
[8] Datta A, Shaji A and Caves C M 2008 Phys. Rev. Lett. 100 050502
[9] Knill E and Laflamme R 1998 Phys. Rev. Lett. 81 5672
[10] Modi K, Brodutch A, Cable H, Paterek T and Vedral V 2012 Rev. Mod. Phys. 84 1655
[11] Dakić B, Vedral V and Brukner Č 2010 Phys. Rev. Lett. 105 190502
[12] Luo S L and Fu S S 2011 Phys. Rev. Lett. 106 120401
[13] Luo S L, Fu S S and Oh C H 2012 Phys. Rev. A 85 032117
[14] Girolami G and Adesso G 2012 Phys. Rev. Lett. 108 150403
[15] Luo S L 2008 Phys. Rev. A 77 022301
[16] Nielsen M A 2000 arXiv: quant-ph/0011036
[17] Wang X G 2001 Phys. Rev. A 64 012313
[18] Wang X G and Zanardi P 2001 Phys. Lett. A 301 1
[19] Wang X G 2002 Phys. Rev. A 66 044305
[20] Gunlycke D, Kendon V M and Vedral V 2001 Phys. Rev. A 64 042302
[21] Hao X and Zhu S Q 2005 Phys. Rev. A 72 042306
[22] Wang X G and Wang Z D 2006 Phys. Rev. A 73 064302
[23] Rossignoli R and Canosa N 2004 Phys. Lett. A 323 22
[24] Rossignoli R and Canosa N 2005 Phys. Rev. A 72 012335
[25] Xi X Q, Zhang T and Yue R A 2004 Acta Phys. Sin. 53 2755 (in Chinese)
[26] Du X M, Man Z X and Xia Y J 2008 Acta Phys. Sin. 57 7457 (in Chinese)
[27] Wang Q, Liao J Q and Zeng H S 2010 Chin. Phys. B 19 100311
[28] Dzyaloshinski I 1958 J. Phys. Chem. Solid 4 241
[29] Moriya T 1960 Phys. Rev. Lett. 4 228
[30] Zhang G F 2007 Phys. Rev. A 75 034304
[31] Werlang T and Rigolin G 2010 Phys. Rev. A 81 044101
[32] Wang L C, Yan J Y and Yi X X 2011 Chin. Phys. B 20 040305
[33] Xie M Q and Guo B 2013 Acta Phys. Sin. 62 110303 (in Chinese)
[34] Werlang T, Trippe C, Ribeiro G A P and Rigolin G 2010 Phys. Rev. Lett. 105 095702
[35] Werlang T, Ribeiro G A P and Rigolin G 2011 Phys. Rev. A 83 062334
[36] Li Y C and Lin H Q 2011 Phys. Rev. A 83 052323
[37] Barlett S D, De Guise H and Sanders B C 2002 Phys. Rev. A 65 052316
[38] Brukner C, Zukowski M and Zeilinger A 2002 Phys. Rev. Lett. 89 197901
[39] Cerf N J, Bourennane M, Karlsson A and Gisin N 2002 Phys. Rev. Lett. 88 127902
[40] Bechmann-Pasquinucci H and Peres A 2000 Phys. Rev. Lett. 85 3313
[41] Daboul J, Wang X G and Sanders B C 2003 J. Phys. A: Math. Gen. 36 2525
[42] Gottesman D 1999 Chaos Soliton. Fract. 10 1749
[43] Akyüz C, Aydiner E and Müstecaplioğlu Ö E 2008 Opt. Commun. 281 5271
[44] Yip S K 2003 Phys. Rev. Lett. 90 250402
[45] Zhang G F and Li S S 2006 Eur. Phys. J. D 37 123
[46] Wigner E P and Yanase M M 1963 Proc. Natl. Acad. Sci. USA 49 910
[47] Luo S L 2006 Phys. Rev. A 73 022324
[48] Li X, Li D, Huang H, Li X and Kwek L C 2011 Eur. Phys. J. D 64 147
[49] Zyczkowski K, Horodecki P, Sanpera A and Lewenstein M 1998 Phys. Rev. A 58 883
[50] Vidal G and Werner R R 2002 Phys. Rev. A 65 032314
[51] Ma X S 2008 Opt. Commun. 281 484
[1] Robustness of two-qubit and three-qubit states in correlated quantum channels
Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Chin. Phys. B, 2022, 31(7): 070302.
[2] Protection of entanglement between two V-atoms in a multi-cavity coupling system
Wen-Jin Huang(黄文进), Mao-Fa Fang(方卯发), and Xiong Xu(许雄). Chin. Phys. B, 2022, 31(1): 010301.
[3] Quasi-delta negative ions density of Ar/O2 inductively coupled plasma at very low electronegativity
Shu-Xia Zhao(赵书霞). Chin. Phys. B, 2021, 30(5): 055201.
[4] Measurement of electronegativity during the E to H mode transition in a radio frequency inductively coupled Ar/O2 plasma
Peng-Cheng Du(杜鹏程), Fei Gao(高飞, Xiao-Kun Wang(王晓坤), Yong-Xin Liu(刘永新), and You-Nian Wang(王友年). Chin. Phys. B, 2021, 30(3): 035202.
[5] Geometrical quantum discord and negativity of two separable and mixed qubits
Tang-Kun Liu(刘堂昆), Fei Liu(刘飞), Chuan-Jia Shan(单传家), Ji-Bing Liu(刘继兵). Chin. Phys. B, 2019, 28(9): 090304.
[6] Dynamical evolution of photon-added thermal state in thermal reservoir
Xue-Xiang Xu(徐学翔), Hong-Chun Yuan(袁洪春). Chin. Phys. B, 2019, 28(11): 110301.
[7] Thermal entanglement of the spin-1 Ising–Heisenberg diamond chain with biquadratic interaction
Yi-Dan Zheng(郑一丹), Zhu Mao(毛竹), Bin Zhou(周斌). Chin. Phys. B, 2017, 26(7): 070302.
[8] Comparative analysis of entanglement measures based on monogamy inequality
P J Geetha, Sudha, K S Mallesh. Chin. Phys. B, 2017, 26(5): 050301.
[9] Entanglement in a two-spin system with long-range interactions
Soltani M R, Mahdavifar S, Mahmoudi M. Chin. Phys. B, 2016, 25(8): 087501.
[10] Entanglement detection in the mixed-spin Ising-XY model
Hamid Arian Zad. Chin. Phys. B, 2016, 25(3): 030303.
[11] Entanglement and non-Markovianity of a multi-level atom decaying in a cavity
Zi-Long Fan(范子龙), Yu-Kun Ren(任玉坤), Hao-Sheng Zeng(曾浩生). Chin. Phys. B, 2016, 25(1): 010303.
[12] Decoherence of genuine multipartite entanglement for local non-Markovian-Lorentzian reservoirs
Mazhar Ali. Chin. Phys. B, 2015, 24(12): 120303.
[13] Monogamous nature of symmetric N-qubit states of the W class: Concurrence and negativity tangle
P. J. Geetha, K. O. Yashodamma, Sudha. Chin. Phys. B, 2015, 24(11): 110302.
[14] Thermal entanglement in the mixed three-spin XXZ Heisenberg model on a triangular cell
Seyit Deniz Han, Ekrem Aydiner. Chin. Phys. B, 2014, 23(5): 050305.
[15] Theoretical optoelectronic analysis of intermediate-band photovoltaic material based on ZnY1-xOx (Y=S, Se, Te) semiconductors by first-principles calculations
Wu Kong-Ping (吴孔平), Gu Shu-Lin (顾书林), Ye Jian-Dong (叶建东), Tang Kun (汤琨), Zhu Shun-Ming (朱顺明), Zhou Meng-Ran (周孟然), Huang You-Rui (黄友锐), Zhang Rong (张荣), Zheng You-Dou (郑有炓). Chin. Phys. B, 2013, 22(10): 107103.
No Suggested Reading articles found!