|
|
Thermal quantum and total correlations in spin-1 bipartite system |
Qiu Liang (仇亮)a, Ye Bin (叶宾)b |
a College of Sciences, China University of Mining and Technology, Xuzhou 221116, China;
b School of Information and Electrical Engineering, China University of Mining and Technology, Xuzhou 221116, China |
|
|
Abstract Thermal quantum and total correlations of a two spin-1 Ising model in the presence of an external homogeneous magnetic field and the Dzyaloshinski-Moriya (DM) interaction are investigated. The result indicates that the DM interaction plays a leading role in the quantum correlation measured by measurement-induced disturbance except for the region with small DM interaction and low temperature, while the DM interaction and the external magnetic field play competing roles in the negativity. The thermal total correlations measured by an alternative new measure defined in terms of the Wigner-Yanase skew information and the quantum mutual information display differences in the same region.
|
Received: 01 August 2013
Revised: 14 October 2013
Accepted manuscript online:
|
PACS:
|
03.67.Ud
|
|
|
75.10.Jm
|
(Quantized spin models, including quantum spin frustration)
|
|
65.90.+i
|
(Other topics in thermal properties of condensed matter)
|
|
Fund: Project supported by the Fundamental Research Funds for the Central Universities of China (Grant No. 2012QNA37). |
Corresponding Authors:
Qiu Liang
E-mail: lqiu@cumt.edu.cn
|
About author: 03.67.Ud; 75.10.Jm; 65.90.+i |
Cite this article:
Qiu Liang (仇亮), Ye Bin (叶宾) Thermal quantum and total correlations in spin-1 bipartite system 2014 Chin. Phys. B 23 050304
|
[1] |
Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
|
[2] |
Amico L, Fazio R, Osterloh A and Vedral V 2008 Rev. Mod. Phys. 80 517
|
[3] |
Piani M, Horodecki P and Horodecki P 2008 Phys. Rev. Lett. 100 090502
|
[4] |
Luo S L and Zhang Q 2008 J. Stat. Phys. 131 1169
|
[5] |
Li N and Luo S L 2008 Phys. Rev. A 78 024303
|
[6] |
Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901
|
[7] |
Henderson L and Vedral V 2001 J. Phy. A 34 6899
|
[8] |
Datta A, Shaji A and Caves C M 2008 Phys. Rev. Lett. 100 050502
|
[9] |
Knill E and Laflamme R 1998 Phys. Rev. Lett. 81 5672
|
[10] |
Modi K, Brodutch A, Cable H, Paterek T and Vedral V 2012 Rev. Mod. Phys. 84 1655
|
[11] |
Dakić B, Vedral V and Brukner Č 2010 Phys. Rev. Lett. 105 190502
|
[12] |
Luo S L and Fu S S 2011 Phys. Rev. Lett. 106 120401
|
[13] |
Luo S L, Fu S S and Oh C H 2012 Phys. Rev. A 85 032117
|
[14] |
Girolami G and Adesso G 2012 Phys. Rev. Lett. 108 150403
|
[15] |
Luo S L 2008 Phys. Rev. A 77 022301
|
[16] |
Nielsen M A 2000 arXiv: quant-ph/0011036
|
[17] |
Wang X G 2001 Phys. Rev. A 64 012313
|
[18] |
Wang X G and Zanardi P 2001 Phys. Lett. A 301 1
|
[19] |
Wang X G 2002 Phys. Rev. A 66 044305
|
[20] |
Gunlycke D, Kendon V M and Vedral V 2001 Phys. Rev. A 64 042302
|
[21] |
Hao X and Zhu S Q 2005 Phys. Rev. A 72 042306
|
[22] |
Wang X G and Wang Z D 2006 Phys. Rev. A 73 064302
|
[23] |
Rossignoli R and Canosa N 2004 Phys. Lett. A 323 22
|
[24] |
Rossignoli R and Canosa N 2005 Phys. Rev. A 72 012335
|
[25] |
Xi X Q, Zhang T and Yue R A 2004 Acta Phys. Sin. 53 2755 (in Chinese)
|
[26] |
Du X M, Man Z X and Xia Y J 2008 Acta Phys. Sin. 57 7457 (in Chinese)
|
[27] |
Wang Q, Liao J Q and Zeng H S 2010 Chin. Phys. B 19 100311
|
[28] |
Dzyaloshinski I 1958 J. Phys. Chem. Solid 4 241
|
[29] |
Moriya T 1960 Phys. Rev. Lett. 4 228
|
[30] |
Zhang G F 2007 Phys. Rev. A 75 034304
|
[31] |
Werlang T and Rigolin G 2010 Phys. Rev. A 81 044101
|
[32] |
Wang L C, Yan J Y and Yi X X 2011 Chin. Phys. B 20 040305
|
[33] |
Xie M Q and Guo B 2013 Acta Phys. Sin. 62 110303 (in Chinese)
|
[34] |
Werlang T, Trippe C, Ribeiro G A P and Rigolin G 2010 Phys. Rev. Lett. 105 095702
|
[35] |
Werlang T, Ribeiro G A P and Rigolin G 2011 Phys. Rev. A 83 062334
|
[36] |
Li Y C and Lin H Q 2011 Phys. Rev. A 83 052323
|
[37] |
Barlett S D, De Guise H and Sanders B C 2002 Phys. Rev. A 65 052316
|
[38] |
Brukner C, Zukowski M and Zeilinger A 2002 Phys. Rev. Lett. 89 197901
|
[39] |
Cerf N J, Bourennane M, Karlsson A and Gisin N 2002 Phys. Rev. Lett. 88 127902
|
[40] |
Bechmann-Pasquinucci H and Peres A 2000 Phys. Rev. Lett. 85 3313
|
[41] |
Daboul J, Wang X G and Sanders B C 2003 J. Phys. A: Math. Gen. 36 2525
|
[42] |
Gottesman D 1999 Chaos Soliton. Fract. 10 1749
|
[43] |
Akyüz C, Aydiner E and Müstecaplioğlu Ö E 2008 Opt. Commun. 281 5271
|
[44] |
Yip S K 2003 Phys. Rev. Lett. 90 250402
|
[45] |
Zhang G F and Li S S 2006 Eur. Phys. J. D 37 123
|
[46] |
Wigner E P and Yanase M M 1963 Proc. Natl. Acad. Sci. USA 49 910
|
[47] |
Luo S L 2006 Phys. Rev. A 73 022324
|
[48] |
Li X, Li D, Huang H, Li X and Kwek L C 2011 Eur. Phys. J. D 64 147
|
[49] |
Zyczkowski K, Horodecki P, Sanpera A and Lewenstein M 1998 Phys. Rev. A 58 883
|
[50] |
Vidal G and Werner R R 2002 Phys. Rev. A 65 032314
|
[51] |
Ma X S 2008 Opt. Commun. 281 484
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|