Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(4): 047701    DOI: 10.1088/1674-1056/23/4/047701
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

La-doped BiFeO3:Synthesis and multiferroic property study

Lin Peng-Ting (蔺鹏婷)a, Li Xiang (李祥)a, Zhang Li (张丽)a, Yin Jin-Hua (阴津华)b, Cheng Xing-Wang (程兴旺)a, Wang Zhi-Hong (王志宏)c, Wu Yu-Chuan (吴玉娟)d, Wu Guang-Heng (吴光恒)c
a School for Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China;
b Physics Department, University of Science & Technology of Beijing, Beijing 100083, China;
c State Key Laboratory of Magnetism, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
d Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taiwan, China
Abstract  A new sol-foam-gel method was developed to fabricate La-doped BiFeO3 multiferroic materials. It was demonstrated that a gradual increase in the content of La-doped into BiFeO3 results in its structure changing from rhombohedral to orthorhombic. A study of other property changes indicates that La-doping in BiFeO3 enhances its ferromagnetism and ferroelectricity. A temperature-dependent magnetization study suggests that the magnetic property of La-doped BiFeO3 samples varied from antiferromagnetic to ferromagnetic as the content of La-doped into BiFeO3 increased from 0 to 20%. Unique temperature-dependent zero field cooling (ZFC) and field cooling (FC) magnetization behaviors were observed in 15% La-doped BiFeO3 – its ZFC temperature-dependent magnetization being ferromagnetic and its FC temperature-dependent magnetization being antiferromagnetic. A possible mechanism of such an interesting M-T behavior is discussed.
Keywords:  multiferroic      BiFeO3      ferromagnetism  
Received:  25 September 2013      Revised:  30 October 2013      Accepted manuscript online: 
PACS:  77.80.Dj (Domain structure; hysteresis)  
  77.84.-s (Dielectric, piezoelectric, ferroelectric, and antiferroelectric materials)  
  81.20.Ka (Chemical synthesis; combustion synthesis)  
Corresponding Authors:  Li Xiang     E-mail:  aihyoo@bit.edu.cn
About author:  77.80.Dj; 77.84.-s; 81.20.Ka

Cite this article: 

Lin Peng-Ting (蔺鹏婷), Li Xiang (李祥), Zhang Li (张丽), Yin Jin-Hua (阴津华), Cheng Xing-Wang (程兴旺), Wang Zhi-Hong (王志宏), Wu Yu-Chuan (吴玉娟), Wu Guang-Heng (吴光恒) La-doped BiFeO3:Synthesis and multiferroic property study 2014 Chin. Phys. B 23 047701

[1] Kimura T, Goto T, Shinatanni H, Ishizaka K, Arima T and Tokura Y 2003 Nature 42 655
[2] Wu S M, Cybart S A, Yi D, Parker J M, Ramesh R and Dynes R C 2013 Phys. Rev. Lett. 110 067202
[3] Matsuda M, Fishman R S, Lee C H, Ushiyama T, Yanagisawa Y and Ito T 2012 Phys. Rev. Lett. 109 067205,
[4] Li J B, Rao G H, Xiao Y H, Luo J, Liu G Y, Chen J R and Liang J K 2010 Chin. Phys. B 19 107505
[5] Prelier W, Singh M P and Murugavel P 2005 J. Phys.: Condens. Matter 17 803
[6] Wang K F, Liu J M and Ren Z F 2009 Adv. Phys. 58 4
[7] Hill N A 2000 J. Phys. Chem. B 104 6694
[8] Fiebig M, Lottermoser Th, Fröhlich D, Goltsev A V and Pisarev R V 2002 Nature 419 818
[9] Fischer P, Polomska M, Sosnowska I and Szymański M 1980 J. Phys. C: Solid State Phys. 13 1931
[10] Sosnowska I, Peterlin-Neumaier T and Steichele E 1982 J. Phys. C: Solid State Phys. 15 4835
[11] Yan X L, Chen J G, Qi Y F, Cheng J R and Meng Z Y 2010 J. Eur. Ceram. Soc. 30 265
[12] Zhang S T, Zhang Y, Lu M H, Du C L, Chen Y F, Liu Z G, Zhu Y Y and Ming N B 2006 Appl. Phys. Lett. 88 162901
[13] Cheng Z X, Li A H, Wang X L, Dou S X, Ozawa K, Kimura H, Zhang S J and Shrout T R 2008 J. Appl. Phys. 103 07E507
[14] Zhang Y J, Zhang H G, Yin J H, Zhang H W, Chen J L, Wang W Q and Wu G H 2010 J. Magn. Magn. Mater. 322 2251
[15] Troyanchuk I O, V.Bushinsky M, Karpinsky D V, Mantytskaya O S, Edotova V V and Prochnenko O I 2009 J. Phys. Status Solidi B 246 8
[16] Zhou G H, Pan X and Zhu Y F 2013 Acta Phys. Sin. 62 097502 (in Chinese)
[17] Yuan G L, Wing S, Liu J M and Liu Z G 2006 Appl. Phys. Lett. 89 052905
[18] Pradhan S K, Das J, Rout P P, Mohanta V R, Das S K, Samantray S, Sahu D R, Huang J L, Verma S and Roul B K 2010 J. Phys. Chem. S 71 1557
[19] A.Khomchenko V, Shvartsman V V, Borisov P, Kleemann W, Kiselev D, A, Bdikin I K, Vieira J M and Kholkin A L 2009 Acta Mater. 57 5137
[20] Wang D H, Goh W C, Ning M and Ong C K 2006 Appl. Phys. Lett. 88 212907
[21] Khomchenko V A and Kiselev D A 2007 Appl. Phys. Lett. 90 242901
[22] Xu Q Y, Zai H F, Wu D, Qiu T and Xu M X 2009 Appl. Phys. Lett. 95 112510
[23] Chang F G, Zhang N, Yang F, Wang S X and Song G L 2007 J. Phy. D: Appl. Phys. 40 7799
[24] Kumar M and Yadav K L 2006 J. Appl. Phys. 100 074111
[25] Zhang S X, Luo W J, Wang D L and Ma Y W 2009 J. Mater. Lett. 63 1820
[26] Ruette B, Zvyagin S, Pyatakov A P, Bush A, Li J F, Belotelov V I, Zvezdin A K and Viehland D 2004 Phys. Rev. B 69 064114
[27] Zhang S T, Lu M H, Wu D, Chen Y F and Ming N B 2005 Appl. Phys. Lett. 87 262907
[28] Khomchenko V A, Karpinsky D V, Kholkin A, Sobolev N A, Kakazei G N, Araujo J P, Troyanchuk I.O, Costa B F O and Paixão J A 2010 J. Appl. Phys. 108 074109
[29] Fullerton E E, Jiang J S and Bader S D 1999 J. Magn. Magn. Mater. 200 392
[30] Das S R, Choudhary R N P, Bhattacharya P and Katiyara R S 2007 J. Appl. Phys. 101 034104
[31] Lin Y H, Jiang Q H, Wang Y and Nan C W 2007 Appl. Phys. Lett. 90 172507
[32] Jiang Q H, Ma J, Lin Y H, Nan C W, Shi Z and Shen Z J 2007 Appl. Phys. Lett. 91 022914
[33] Zheng R K, Wen G H, Fung K K, and Zhang X X 2004 J. Appl. Phys. 95 5244
[34] Kittel C 1986 Introduction to Solid state Physics, 6th edn. (New York, Chichester, Brisbane, Toronto, Singapore: John Wily & Sons) p. 447
[35] Palkar V R, John J and Pinto R 2002 Appl. Phys. Lett. 80 1628
[36] Simõesa A Z, Garcia F G and Riccardi C S 2010 J. Alloys Compd. 493 158
[37] Hu G D, Cheng X, Wu W B and Yang C H 2007 Appl. Phys. Lett. 91 232909
[38] Wang S Y, Qiu X, Gao J, Feng Y, Su W N, Zheng J X, Yu D S and Li D J 2011 Appl. Phys. Lett. 98 152902
[39] Li Y B, Yu J, Li J J, Zheng C D, Wu Y Y, Zhao Y, Wang M and Wang Y B 2011 J. Mater. Sci: Matter Electron 22 323
[40] Ueda K, Tabata H and Kawai T 1999 Appl. Phys. Lett. 75 4
[41] Wang N G, Cheng J, Pyatakov A, Zvezdin A K, Li J F, Cross L E and Viehland D 2005 Phys. Rev. B 72 104434
[42] Ishibashi Y and Iwata M 2007 Ferroelectrics 354 8
[1] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[2] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[3] Structural evolution-enabled BiFeO3 modulated by strontium doping with enhanced dielectric, optical and superparamagneticproperties by a modified sol-gel method
Sharon V S, Veena Gopalan E, and Malini K A. Chin. Phys. B, 2023, 32(3): 037504.
[4] Charge-mediated voltage modulation of magnetism in Hf0.5Zr0.5O2/Co multiferroic heterojunction
Jia Chen(陈佳), Peiyue Yu(于沛玥), Lei Zhao(赵磊), Yanru Li(李彦如), Meiyin Yang(杨美音), Jing Xu(许静), Jianfeng Gao(高建峰), Weibing Liu(刘卫兵), Junfeng Li(李俊峰), Wenwu Wang(王文武), Jin Kang(康劲), Weihai Bu(卜伟海), Kai Zheng(郑凯), Bingjun Yang(杨秉君), Lei Yue(岳磊), Chao Zuo(左超), Yan Cui(崔岩), and Jun Luo(罗军). Chin. Phys. B, 2023, 32(2): 027504.
[5] Strain-mediated magnetoelectric control of tunneling magnetoresistance in magnetic tunneling junction/ferroelectric hybrid structures
Wenyu Huang(黄文宇), Cangmin Wang(王藏敏), Yichao Liu(刘艺超), Shaoting Wang(王绍庭), Weifeng Ge(葛威锋), Huaili Qiu(仇怀利), Yuanjun Yang(杨远俊), Ting Zhang(张霆), Hui Zhang(张汇), and Chen Gao(高琛). Chin. Phys. B, 2022, 31(9): 097502.
[6] Computational studies on magnetism and ferroelectricity
Ke Xu(徐可), Junsheng Feng(冯俊生), and Hongjun Xiang(向红军). Chin. Phys. B, 2022, 31(9): 097505.
[7] Dynamical signatures of the one-dimensional deconfined quantum critical point
Ning Xi(西宁) and Rong Yu(俞榕). Chin. Phys. B, 2022, 31(5): 057501.
[8] Skyrmion transport driven by pure voltage generated strain gradient
Shan Qiu(邱珊), Jia-Hao Liu(刘嘉豪), Ya-Bo Chen(陈亚博), Yun-Ping Zhao(赵云平), Bo Wei(危波), and Liang Fang(方粮). Chin. Phys. B, 2022, 31(11): 117701.
[9] Voltage-controllable magnetic skyrmion dynamics for spiking neuron device applications
Ming-Min Zhu(朱明敏), Shu-Ting Cui(崔淑婷), Xiao-Fei Xu(徐晓飞), Sheng-Bin Shi(施胜宾), Di-Qing Nian(年迪青), Jing Luo(罗京), Yang Qiu(邱阳), Han Yang(杨浛), Guo-Liang Yu(郁国良), and Hao-Miao Zhou (周浩淼). Chin. Phys. B, 2022, 31(1): 018503.
[10] Strain-tuned magnetic properties in (Ga,Fe)Sb: First-principles study
Feng-Chun Pan(潘凤春), Xue-Ling Lin(林雪玲), and Xu-Ming Wang(王旭明). Chin. Phys. B, 2021, 30(9): 096105.
[11] Magnetoelectric coupling effect of polarization regulation in BiFeO3/LaTiO3 heterostructures
Chao Jin(金超), Feng-Zhu Ren(任凤竹), Wei Sun(孙伟), Jing-Yu Li(李静玉), Bing Wang(王冰), and Qin-Fen Gu(顾勤奋). Chin. Phys. B, 2021, 30(7): 076105.
[12] Origin of itinerant ferromagnetism in two-dimensional Fe3GeTe2
Xi Chen(陈熙), Zheng-Zhe Lin(林正喆), and Li-Rong Cheng(程丽蓉). Chin. Phys. B, 2021, 30(4): 047502.
[13] Intrinsic two-dimensional multiferroicity in CrNCl2 monolayer
Wei Shen(沈威), Yuanhui Pan(潘远辉), Shengnan Shen(申胜男), Hui Li(李辉), Siyuan Nie(聂思媛), and Jie Mei(梅杰). Chin. Phys. B, 2021, 30(11): 117503.
[14] Effects of Ni substitution on multiferroic properties in Bi5FeTi3O15 ceramics
Hui Sun(孙慧), Jiaying Niu(钮佳颖), Haiying Cheng(成海英), Yuxi Lu(卢玉溪), Zirou Xu(徐紫柔), Lei Zhang(张磊), and Xiaobing Chen(陈小兵). Chin. Phys. B, 2021, 30(10): 107701.
[15] Enhanced ferromagnetism and magnetoelectric response in quenched BiFeO3-based ceramics
Qi Pan(潘祺), Bao-Jin Chu(初宝进). Chin. Phys. B, 2020, 29(8): 087501.
No Suggested Reading articles found!