CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Improving light trapping and conversion efficiency of amorphous silicon solar cell by modified and randomly distributed ZnO nanorods |
Jia Zhi-Nan (贾志楠)a b, Zhang Xiao-Dan (张晓丹)a, Liu Yang (刘阳)a, Wang Yan-Feng (王延峰)a, Fan Jun (樊君)a c, Liu Cai-Chi (刘彩池)b, Zhao Ying (赵颖)a |
a Institute of Photo-Electronics Thin Film Devices and Technology of Nankai University, Key Laboratory of Photo-Electronics Thin Film Devices and Technology of Tianjin, Tianjin 300071, China;
b School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China;
c School of Information and Engineering, Hebei University of Technology, Tianjin 300130, China |
|
|
Abstract Three-dimensional (3D) nanostructures in thin film solar cells have attracted significant attention due to their applications in enhancing light trapping. Enhanced light trapping can result in more effective absorption in solar cells, thus leading to higher short-circuit current density and conversion efficiency. We develop randomly distributed and modified ZnO nanorods, which are designed and fabricated by the following processes: the deposition of a ZnO seed layer on substrate with sputtering, the wet chemical etching of the seed layer to form isolated islands for nanorod growth, the chemical bath deposition of the ZnO nanorods, and the sputtering deposition of a thin Al-doped ZnO (ZnO:Al) layer to improve the ZnO/Si interface. Solar cells employing the modified ZnO nanorod substrate show a considerable increase in solar energy conversion efficiency.
|
Received: 14 July 2013
Revised: 09 October 2013
Accepted manuscript online:
|
PACS:
|
61.46.Km
|
(Structure of nanowires and nanorods (long, free or loosely attached, quantum wires and quantum rods, but not gate-isolated embedded quantum wires))
|
|
78.35.+c
|
(Brillouin and Rayleigh scattering; other light scattering)
|
|
77.55.hf
|
(ZnO)
|
|
88.40.H-
|
(Solar cells (photovoltaics))
|
|
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2011CBA00706 and 2011CBA00707), the High-Technology Research and Development Program of China (Grant No. 2013AA050302), the Science and Technology Support Program of Tianjin City, China (Grant No. 12ZCZDGX03600), the Major Science and Technology SupportProject of Tianjin City, China (Grant No. 11TXSYGX22100), and the Specialized Research Fund for the Ph. D. Program of Higher Education, China (Grant No. 20120031110039). |
Corresponding Authors:
Zhang Xiao-Dan
E-mail: xdzhang@nankai.edu.cn
|
About author: 61.46.Km; 78.35.+c; 77.55.hf; 88.40.H- |
Cite this article:
Jia Zhi-Nan (贾志楠), Zhang Xiao-Dan (张晓丹), Liu Yang (刘阳), Wang Yan-Feng (王延峰), Fan Jun (樊君), Liu Cai-Chi (刘彩池), Zhao Ying (赵颖) Improving light trapping and conversion efficiency of amorphous silicon solar cell by modified and randomly distributed ZnO nanorods 2014 Chin. Phys. B 23 046106
|
[1] |
Hsu M C, Battaglia C, Pahud C, Ruan Z C, Haug F J, Fan S H, Ballif C and Cui Y 2012 Adv. Mater. 2 628
|
[2] |
Fan Z Y, Azavi H, Do J W, Moriwaki A, Ergen O, Chueh Y L, Leu P W, Ho J C, Takahashi T, Reichertz L A, Neale S, Yu K, Wu M, Ager J W and Javey A 2009 Nat. Mater. 8 648
|
[3] |
Bai A Q, Zheng J, Tao Y L, Zuo Y H, Xue C L, Cheng B W and Wang Q M 2011 Chin. Phys. B 20 116103
|
[4] |
Jeong S, Hu L, Lee H R, Garnett E, Choi J W and Cui Y 2010 Nano Lett. 10 2989
|
[5] |
Kim J, Hong A J, Nah J W, Shin B, Ross F M and Sadana D K 2012 ACS Nano. 6 265
|
[6] |
Zhou H J, Wissinger M, Fallert J, Hauschild R and Stelzl F 2007 Phys. Lett. 91 181112
|
[7] |
Wang X D, Summers C J and Wang Z L 2004 Nano Lett. 4 423
|
[8] |
Yang C J, Wang S M and Liang S W 2007 Appl. Phys. Lett. 90 033104
|
[9] |
Battaglia C, Hsu C M, Söderström K, Escarré J, Haug F J, Charriére M, Boccard M, Despeisse M, Alexander D T L, Cantoni M, Cui Y and Ballif C 2012 ACS Nano. 6 2790
|
[10] |
Lin A and Phillips J 2008 Sol. Energy Mater. Sol. Cells 92 1689
|
[11] |
Niederberger M and Cölfen H 2006 Phys. Chem. Chem. Phys. 8 3271
|
[12] |
Liu D F, Xiang Y J, Wu X C, Zhang Z X, Liu L F, Song L, Zhao X W, Luo S D, Ma W J, Shen J, Zhou W Y, Wang G, Wang C Y and Xie S S 2006 Nano Lett. 6 2375
|
[13] |
Huang M H, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R and Yang P D 2001 Science 292 1897
|
[14] |
Pan N, Xue H, Yu M, Cui X, Wang X, Hou G, Huang J and Deng S Z 2010 Nanotechnology 21 225707
|
[15] |
Li Y B, Pan H, Lin J Y, Ding J, Feng Y P, Thongmee S, Liu T, Gong H and Wang L 2008 Adv. Mater. 20 1170
|
[16] |
Erdélyi R, Nagata T, Rogers D J, Teherani F H, Horváth Z E, Lábadi Z, Baji Z, Wakayam Y and Volk J 2011 Cryst. Growth Des. 11 2515
|
[17] |
Qin Y, Wang X and Wang Z L 2008 Nature 451 809
|
[18] |
Lee Y J, Sounart T L, Liu J, Spoerke E D, McKenzie B B, Hsu J W P and Voigt J A 2008 Cryst. Growth Des. 8 2036
|
[19] |
Law M, Greene L E, Johnson J C, Saykally R and Yang P D 2005 Nat. Mater. 4 455
|
[20] |
Yu M, Long Y Z, Sun B and Fan Z Y 2012 Nanoscale 4 2783
|
[21] |
Xu C and Wang Z L 2011 Adv. Mater. 23 873
|
[22] |
Greene L E, Law M, Tan D H, Montano M, Goldberger J, Somorjai G and Yang P D 2005 Nano Lett. 5 1231
|
[23] |
Ferry V E, Verschuuren M A, Li H B T, Verhagen E, Walters R J, Schropp R E I, Atwater H A and Polman A 2010 Opt. Express 18 A237
|
[24] |
Spinelli P, Verschuuren M A and Polman A 2012 Nat. Commun. 3 692
|
[25] |
Green M A 1982 Solar Cells: Operating Principles, Technology, and System Applications (New Jersey: Prentice-Hall)
|
[26] |
Kieven D, Dittrich T, Belaidi A, Tornow J, Schwarzburg K, Allsop N and Lux-Steiner M 2008 Appl. Phys. Lett. 92 153107
|
[27] |
Spurgeon J M, Atwater H A and Lewis N S 2008 J. Phys. Chem. C 112 6186
|
[28] |
Krunks M, Kärber E, Katerski A, Otto K, Acik I O, Dedova T and Mere A 2010 Sol. Energy Mater. Sol. Cells 94 1191
|
[29] |
Kelzenberg M D, Boettcher S W, Petykiewicz J A, Turner-Evans D B, Putnam M C, Warren E L, Spurgeon J M, Briggs R M, Lewis N S and Atwater H A 2010 Nat. Mater. 9 239
|
[30] |
Zhu J, Yu Z, Burkhard G F, Hsu C M, Connor S T, Xu Y, Wang Q, Mc Gehee M, Fan S and Cui Y 2009 Nano Lett. 9 279
|
[31] |
Kuang Y, Werf K H M, Houweling Z S and Schropp R E I 2011 Appl. Phys. Lett. 98 113111
|
[32] |
Ferry V E, Verschuuren M A, Lare M C, Schropp R E I, Atwater H A and Polman A 2011 Nano Lett. 11 4239
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|