Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(8): 084301    DOI: 10.1088/1674-1056/ac538f
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Three-dimensional coupled-mode model and characteristics of low-frequency sound propagation in ocean waveguide with seamount topography

Ya-Xiao Mo(莫亚枭)1,†, Chao-Jin Zhang(张朝金)2, Li-Cheng Lu(鹿力成)1, and Sheng-Ming Guo(郭圣明)1
1 Key Laboratory of Underwater Acoustic Environment, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China;
2 China State Shipbuilding Corporation Systems Engineering Research Institute, Beijing 100094, China
Abstract  Large-scale topography, such as a seamount, substantially impacts low-frequency sound propagation in an ocean waveguide, limiting the application of low-frequency acoustic detecting techniques. A three-dimensional (3D) coupled-mode model is developed to calculate the acoustic field in an ocean waveguide with seamount topography and analyze the 3D effect. In this model, a correction is introduced in the bottom boundary, theoretically making the acoustic field satisfy the energy conservation. Furthermore, a large azimuth angle calculation range is obtained by using the operator theory and higher-order Padé approximation. Additionally, the model has advantages related to the coupling mode and parabolic equation theory. The couplings corresponding to the effects of range-dependent environment are fully considered, and the numerical implementation is kept feasible. After verifying the accuracy and reliability of the model, low-frequency sound propagation characteristics in the seamount environment are analyzed. The results indicate lateral variability in bathymetry can lead to out-of-plane effects such as the horizontal refraction phenomenon, while the coupling effect tends to restore the abnormal sound field and produces acoustic field diffraction behind the seamount. This model effectively considers the effects of the horizontal refraction and coupling, which are proportional to the scale of the seamount.
Keywords:  coupled-mode model      three-dimensional sound propagation      seamount topography      horizontal interference structure  
Received:  18 November 2021      Revised:  13 January 2022      Accepted manuscript online:  10 February 2022
PACS:  43.30.Bp (Normal mode propagation of sound in water)  
  43.20.El (Reflection, refraction, diffraction of acoustic waves)  
  43.30.Dr (Hybrid and asymptotic propagation theories, related experiments)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11804360), the IACAS Frontier Exploration Project (Grant No. QYTS202103), and the Key Laboratory Foundation of Acoustic Science and Technology (Grant No. 2021-JCJQ-LB-066-08).
Corresponding Authors:  Ya-Xiao Mo     E-mail:  moyaxiao@mail.ioa.ac.cn

Cite this article: 

Ya-Xiao Mo(莫亚枭), Chao-Jin Zhang(张朝金), Li-Cheng Lu(鹿力成), and Sheng-Ming Guo(郭圣明) Three-dimensional coupled-mode model and characteristics of low-frequency sound propagation in ocean waveguide with seamount topography 2022 Chin. Phys. B 31 084301

[1] Heaney K D, Prior M and Campbell R L 2017 J. Acoust. Soc. Am. 141 878
[2] Heaney K D, Campbell R L and Snellen M 2013 J. Acoust. Soc. Am. 134 3299
[3] Li S H, Li Z L, Li W and Qin J X 2018 Acta Phys. Sin. 67 224302 (in Chinese)
[4] Jensen F B, Kuperman W A, Porter M B and Schmidt H 2011 Computational Ocean Acoustics, 2nd edn. (New York:Springer)
[5] Lin Y T, Collis J M and Duda T F 2012 J. Acoust. Soc. Am. 132 EL364
[6] Lin Y T, Duda T F and Newhall A E 2013 J. Comput. Acoust. 21 1250018
[7] Sturm F 2016 J. Acoust. Soc. Am. 139 263
[8] Xu C X, Piao S C, Yang S E, Zhang H G and Li L 2017 J. Comput. Acoust. 25 1650021
[9] Abawi A T 2002 J. Acoust. Soc. Am. 111 160
[10] Yang T C 2014 J. Acoust. Soc. Am. 135 610
[11] Yang C M, Luo W Y, Zhang R H, Lyu L G and Qiao F L 2016 J. Comput. Acoust. 24 1550019
[12] Zhang Z Z, Luo W Y, Pang Z and Zhou Y Q 2019 Acta. Phys. Sin. 68 204302 (in Chinese)
[13] Godin O A 1998 J. Acoust. Soc. Am. 103 159
[14] Brekhovskikh L M and Godin O A 1999 Acoustics of Layered Media:Point Source and Bouned Beams (New York:Spinger)
[15] Li X L, Song W H, Gao D Z, Gao W and Wang H Z 2019 The 14th International Conference on Theoretical and Computational Acoustics, July 28-August 1, 2019, Beijing, China, p. 138
[16] Peng Z H and Zhang R H 2005 Acta Acustica. 30 97 (in Chinese)
[17] Mo Y X, Piao S C, Zhang H G and Li L 2014 Acta. Phys. Sin. 63 214302 (in Chinese)
[18] Luo W Y and Schmidt H 2009 J. Acoust. Soc. Am. 125 52
[19] Luo W Y, Zhang R H and Schmidt H 2011 Sci. China. Phys. Mech. Astron. 54 1561
[20] Collins M D 1993 J. Acoust. Soc. Am. 93 1736
[21] Collins M D 2015 J. Acoust. Soc. Am. 137 1557
[1] Acoustic propagation uncertainty in internal wave environments using an ocean-acoustic joint model
Fei Gao(高飞), Fanghua Xu(徐芳华), Zhenglin Li(李整林), Jixing Qin(秦继兴), and Qinya Zhang(章沁雅). Chin. Phys. B, 2023, 32(3): 034302.
[2] Effects of mesoscale eddies on the spatial coherence of a middle range sound field in deep water
Fei Gao(高飞), Fang-Hua Xu(徐芳华), and Zheng-Lin Li(李整林). Chin. Phys. B, 2022, 31(11): 114302.
[3] Wave mode computing method using the step-split Padé parabolic equation
Chuan-Xiu Xu(徐传秀) and Guang-Ying Zheng(郑广赢). Chin. Phys. B, 2022, 31(9): 094301.
[4] Influence of warm eddies on sound propagation in the Gulf of Mexico
Yao Xiao(肖瑶), Zhenglin Li(李整林), Jun Li(李鋆), Jiaqi Liu(刘佳琪), Karim G Sabra. Chin. Phys. B, 2019, 28(5): 054301.
[5] A passive source ranging method based on the frequency warping transform of the vertical intensity flux in shallow water
Yu-Bo Qi(戚聿波), Shi-Hong Zhou(周士弘), Meng-Xiao Yu(于梦枭), Shu-Yuan Du(杜淑媛), Mei Sun(孙梅), Ren-He Zhang(张仁和). Chin. Phys. B, 2019, 28(5): 054302.
[6] A three-dimensional coupled-mode model for the acoustic field in a two-dimensional waveguide with perfectly reflecting boundaries
Wen-Yu Luo(骆文于), Xiao-Lin Yu(于晓林), Xue-Feng Yang(杨雪峰), Ze-Zhong Zhang(张泽众), Ren-He Zhang(张仁和). Chin. Phys. B, 2016, 25(12): 124309.
[7] Spatial correlation of the high intensity zone in deep-water acoustic field
Jun Li(李鋆), Zheng-Lin Li(李整林), Yun Ren(任云). Chin. Phys. B, 2016, 25(12): 124310.
[8] Analytical solution based on the wavenumber integration method for the acoustic field in a Pekeris waveguide
Wen-Yu Luo(骆文于), Xiao-Lin Yu(于晓林), Xue-Feng Yang(杨雪峰), Ren-He Zhang(张仁和). Chin. Phys. B, 2016, 25(4): 044302.
[9] Underwater asymmetric acoustic transmission structure using the medium with gradient change of impedance
Bo Hu(胡博), Jie Shi(时洁), Sheng-Guo Shi(时胜国), Yu Sun(孙玉), Zhong-Rui Zhu(朱中锐). Chin. Phys. B, 2016, 25(2): 024305.
[10] Investigation of long-range sound propagation in surface ducts
Duan Rui (段睿), Yang Kun-De (杨坤德), Ma Yuan-Liang (马远良). Chin. Phys. B, 2013, 22(12): 124301.
[11] Benchmark solutions for sound propagation in an ideal wedge
Luo Wen-Yu (骆文于), Yang Chun-Mei (杨春梅), Qin Ji-Xing (秦继兴), Zhang Ren-He (张仁和). Chin. Phys. B, 2013, 22(5): 054301.
No Suggested Reading articles found!