Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(2): 024202    DOI: 10.1088/1674-1056/23/2/024202
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Single photon transport properties in coupled cavity arrays nonlocally coupled to a two-level atom in the presence of dissipation

Hai Lian (海莲)a, Tan Lei (谭磊)a b, Feng Jin-Shan (冯金山)a, Xu Wen-Bin (徐文斌)a, Wang Bin (王彬)a
a Institute of Theoretical Physics, Lanzhou University, Lanzhou 730070, China;
b Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730070, China
Abstract  We discuss the effects of dissipation on the behavior of single photon transport in a system of coupled cavity arrays, with the two nearest cavities nonlocally coupled to a two-level atom. The single photon transmission amplitude is solved exactly by employing the quasi-boson picture. We investigate two different situations of local and nonlocal couplings, respectively. Comparing the dissipative case with the nondissipative one reveals that the dissipation of the system increases the middle dip and lowers the peak of the single photon transmission amplitudes, broadening the line width of the transport spectrum. It should be noted that the influence of the cavity dissipation to the single photon transport spectrum is asymmetric. By comparing the nonlocal coupling with the local one, one can find that the enhancement of the middle dip of single photon transmission amplitudes is mostly caused by the atom dissipation and that the reduced peak is mainly caused by the cavity dissipation, no matter whether it is a nonlocal or local coupling case. Whereas in the nonlocal coupling case, when the coupling strength gets stronger, the cavity dissipation has a greater effect on the single photon transport spectrum and the atom dissipation affection becomes weak, so it can be ignored.
Keywords:  single photon transport      dissipative coupled cavity arrays      dissipative two-level atom      local and nonlocal couplings  
Received:  17 April 2013      Revised:  11 June 2013      Accepted manuscript online: 
PACS:  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
  37.30.+i (Atoms, molecules, andions incavities)  
  42.50.Ct (Quantum description of interaction of light and matter; related experiments)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10704031, 10874235, 11274148, and 10934010).
Corresponding Authors:  Tan Lei     E-mail:  tanlei@lzu.edu.cn
About author:  42.50.Pq; 37.30.+i; 42.50.Ct

Cite this article: 

Hai Lian (海莲), Tan Lei (谭磊), Feng Jin-Shan (冯金山), Xu Wen-Bin (徐文斌), Wang Bin (王彬) Single photon transport properties in coupled cavity arrays nonlocally coupled to a two-level atom in the presence of dissipation 2014 Chin. Phys. B 23 024202

[1] Huo M X, Li Y, Song Z and Sun C P 2008 Phys. Rev. A 77 022103
[2] Bose S, Angelakis D G and Burgarth D 2007 J. Mod. Opt. 54 2307
[3] Angelakis D G, Santos M F, Yannopapas V and Ekert A 2007 Phys. Lett. A 362 377
[4] Hartmann M J, Brandão F G S L and Plenio M B 2008 Laser Photon. Rev. 2 527
[5] Shen J T and Fan S 2009 Phys. Rev. A 79 023837
[6] Zhou L, Gong Z R, Liu Y X and Sun C P 2008 Phys. Rev. Lett. 101 100501
[7] Liao J Q, Huang J F, Liu Y X, Kuang L M and Sun C P 2009 Phys. Rev. A 80 014301
[8] Gong Z R, Ian H, Zhou L and Sun C P 2008 Phys. Rev. A 78 053806
[9] Lang J H 2010 Chin. Phys. Lett. 28 104210
[10] Cheng M T, Luo Y Q, Song Y Y and Zhao G X 2010 Opt. Commun. 283 3721
[11] Cheng M T, Luo Y Q, Song Y Y and Zhao G X 2011 Commun. Theor. Phys. 55 501
[12] Schmid S I and Evers J 2011 Phys. Rev. A 84 053822
[13] Witthaut D and Sφrensen A S 2010 New. J. Phys. 12 043052
[14] Zhou L, Chang Y, Dong H, Kuang L M and Sun C P 2012 Phys. Rev. A 85 013806
[15] Cheng M T, Ma X S, Ting M T, Luo Y Q and Zhao G X 2012 Phys. Rev. A 85 053840
[16] Liu K, Tan L, Lü C H and Liu W M 2011 Phys. Rev. A 83 063840
[17] Tan L and Hai L 2012 J. Phys. B: At. Mol. Opt. Phys. 45 035504
[18] Notomi M, Kuramochi E and Tanabe T 2008 Nat. Photon. 2 741
[19] Xu Y, Li Y, Lee R K and Yariv A 2000 Phys. Rev. E 62 7389
[1] Quantum properties of nonclassical states generated by an optomechanical system with catalytic quantum scissors
Heng-Mei Li(李恒梅), Bao-Hua Yang(杨保华), Hong-Chun Yuan(袁洪春), and Ye-Jun Xu(许业军). Chin. Phys. B, 2023, 32(1): 014202.
[2] High-fidelity quantum sensing of magnon excitations with a single electron spin in quantum dots
Le-Tian Zhu(朱乐天), Tao Tu(涂涛), Ao-Lin Guo(郭奥林), and Chuan-Feng Li(李传锋). Chin. Phys. B, 2022, 31(12): 120302.
[3] Enhanced single photon emission in silicon carbide with Bull's eye cavities
Xing-Hua Liu(刘兴华), Fang-Fang Ren(任芳芳), Jiandong Ye(叶建东), Shuxiao Wang(王书晓), Wei-Zong Xu(徐尉宗), Dong Zhou(周东), Mingbin Yu(余明斌), Rong Zhang(张荣), Youdou Zheng(郑有炓), and Hai Lu(陆海). Chin. Phys. B, 2022, 31(10): 104206.
[4] Tunable second-order sideband effects in hybrid optomechanical cavity assisted with a Bose—Einstein condensate
Li-Wei Liu(刘利伟), Chun-Guang Du(杜春光), Guo-Heng Zhang(张国恒), Qiong Chen(陈琼), Yu-Qing Shi(石玉清), Pei-Yu Wang(王培煜), and Yu-Qing Zhang(张玉青). Chin. Phys. B, 2022, 31(10): 103701.
[5] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[6] Manipulation of nonreciprocal unconventional photon blockade in a cavity-driven system composed of an asymmetrical cavity and two atoms with weak dipole-dipole interaction
Xinqin Zhang(张新琴), Xiuwen Xia(夏秀文), Jingping Xu(许静平), Haozhen Li(李浩珍), Zeyun Fu(傅泽云), and Yaping Yang(羊亚平). Chin. Phys. B, 2022, 31(7): 074204.
[7] Photon blockade in a cavity-atom optomechanical system
Zhong Ding(丁忠) and Yong Zhang(张勇). Chin. Phys. B, 2022, 31(7): 070304.
[8] Change-over switch for quantum states transfer with topological channels in a circuit-QED lattice
Liu-Yong Cheng(程留永), Li-Na Zheng(郑黎娜), Ruixiang Wu(吴瑞祥), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(2): 020305.
[9] Hidden symmetry operators for asymmetric generalized quantum Rabi models
Xilin Lu, Zi-Min Li, Vladimir V Mangazeev, and Murray T Batchelor. Chin. Phys. B, 2022, 31(1): 014210.
[10] Protection of entanglement between two V-atoms in a multi-cavity coupling system
Wen-Jin Huang(黄文进), Mao-Fa Fang(方卯发), and Xiong Xu(许雄). Chin. Phys. B, 2022, 31(1): 010301.
[11] Enhancing stationary entanglement between two optomechanical oscillators by Coulomb interaction with Kerr medium
Tian-Le Yang(杨天乐), Chen-Long Zhu(朱陈龙), Sheng Liu(刘声), and Ye-Jun Xu(许业军). Chin. Phys. B, 2021, 30(12): 124201.
[12] Quantum exceptional points of non-Hermitian Hamiltonian and Liouvillian in dissipative quantum Rabi model
Xianfeng Ou(欧先锋), Jiahao Huang(黄嘉豪), and Chaohong Lee(李朝红). Chin. Phys. B, 2021, 30(11): 110309.
[13] Ideal optomechanically induced transparency generation in a cavity optoelectromechanical system
Jing Wang(王婧) and Xue-Dong Tian(田雪冬). Chin. Phys. B, 2021, 30(10): 104211.
[14] Multiple induced transparency in a hybrid driven cavity optomechanical device with a two-level system
Wei Zhang(张伟), Li-Guo Qin(秦立国), Li-Jun Tian(田立君), and Zhong-Yang Wang(王中阳). Chin. Phys. B, 2021, 30(9): 094203.
[15] Shortcut-based quantum gates on superconducting qubits in circuit QED
Zheng-Yin Zhao(赵正印), Run-Ying Yan(闫润瑛), and Zhi-Bo Feng(冯志波). Chin. Phys. B, 2021, 30(8): 088501.
No Suggested Reading articles found!