CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Interfacial and electrical properties of HfAlO/GaSb metal-oxide-semiconductor capacitors with sulfur passivation |
Tan Zhen (谭桢), Zhao Lian-Feng (赵连锋), Wang Jing (王敬), Xu Jun (许军) |
Tsinghua National Laboratory for Information Science and Technology, Institute of Microelectronics, Tsinghua University, Beijing 100084, China |
|
|
Abstract Interfacial and electrical properties of HfAlO/GaSb metal-oxide-semiconductor capacitors (MOSCAPs) with sulfur passivation were investigated and the chemical mechanisms of the sulfur passivation process were carefully studied. It was shown that the sulfur passivation treatment could reduce the interface trap density Dit of the HfAlO/GaSb interface by 35% and reduce the equivalent oxide thickness (EOT) from 8 nm to 4 nm. The improved properties are due to the removal of the native oxide layer, as was proven by x-ray photoelectron spectroscopy measurements and high-resolution cross-sectional transmission electron microscopy (HRXTEM) results. It was also found that GaSb-based MOSCAPs with HfAlO gate dielectrics have interfacial properties superior to those using HfO2 or Al2O3 dielectric layers.
|
Received: 22 May 2013
Revised: 13 July 2013
Accepted manuscript online:
|
PACS:
|
77.55.D-
|
|
|
81.05.Ea
|
(III-V semiconductors)
|
|
81.65.Rv
|
(Passivation)
|
|
73.20.At
|
(Surface states, band structure, electron density of states)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2011CBA00602) and the National Science and Technology Major Project, China (Grant No. 2011ZX02708-002). |
Corresponding Authors:
Xu Jun
E-mail: junxu@tsinghua.edu.cn
|
Cite this article:
Tan Zhen (谭桢), Zhao Lian-Feng (赵连锋), Wang Jing (王敬), Xu Jun (许军) Interfacial and electrical properties of HfAlO/GaSb metal-oxide-semiconductor capacitors with sulfur passivation 2014 Chin. Phys. B 23 017701
|
[1] |
Del Alamo J A 2011 Nature 479 317
|
[2] |
Ye P D, Wilk G D, Kwo J, Yang B, Gossmann H J L, Frei M, Chu S N G, Mannaerts J P, Sergent M, Hong M, Ng K K and Bude J 2003 IEEE Electron. Device Lett. 24 209
|
[3] |
Li N, Harmon E S, Hyland J, Salzman D B, Ma T P, Xuan Y and Ye P D 2008 Appl. Phys. Lett. 92 143507
|
[4] |
Feng Q, Xing T, Wang Q, Feng Q, Li Q, Bi Z W, Zhang J C and Hao Y 2012 Chin. Phys. B 21 017304
|
[5] |
Yen C F and Lee M K 2012 Jpn. J. Appl. Phys. 51 081201
|
[6] |
Zade D, Kanda T, Yamashita K, Kakushima K, Nohira H, Ahmet P, Tsutsui K, Nishiyama A, Sugii N, Natori K, Hattori T and Iwai H 2011 Jpn. J. Appl. Phys. 50 10PD03
|
[7] |
Xuan Y, Lin H C, Ye P D and Wilk G D 2006 Appl. Phys. Lett. 88 263518
|
[8] |
Radosavljevic M, Kung B C, Corcoran S, Dewey G, Hudait M K, Fastenau J M, Kavalieros J, Liu W K, Lubyshev D, Metz M, Millard K, Mukherjee N, Rachmady W, Shah U and Chau R 2009 IEDM Tech. Dig., December 7–9, 2009 Baltimore, United States, p. 319
|
[9] |
Nainani A, Irisawa T, Yuan Z, Bennett B R, Boos J B, Nishi Y and Saraswat K C 2011 IEEE Trans. Electron. Devices 58 3407
|
[10] |
Trinh H D, Lin Y C, Wang H C, Chang C H, Kakushima K, Iwai H, Kawanago T, Lin Y G, Chen C M, Wong Y Y, Huang G N, Hudait M and Chang E Y 2012 Appl. Phys. Express 5 021104
|
[11] |
Huang M L, Chang Y C, Chang C H, Lee Y J, Chang P, Kwo J, Wu T B and Hong M 2005 Appl. Phys. Lett. 87 252104
|
[12] |
Xu M, Wang R and Ye P D 2011 IEEE Electron. Device Lett. 32 883
|
[13] |
Ali A, Madan H S, Kirk A P, Zhao D A, Mourey D A, Hudait M K, Wallace R M, Jackson T N, Bennett B R, Boos J B and Datta S 2010 Appl. Phys. Lett. 97 143502
|
[14] |
Nainani A, Irisawa T, Yuan Z, Sun Y, Krishnamohan T, Reason M, Bennett B R, Boos J B, Ancona M G, Nishi Y and Saraswat K C 2010 IEDM Tech. Dig., December 6–8, 2010 San Francisco, United States, p. 138
|
[15] |
Xiong K, Wang W, Zhernokletov D M, Santosh K C, Longo R C, Wallace R M and Cho K 2013 Appl. Phys. Lett. 102 022901
|
[16] |
Wang C, Xu M, Gu J, Zhang D W and Ye P D 2012 Electrochem. Solid-State Lett. 15 H51
|
[17] |
Tang X Y, Song Q W, Zhang Y M, Zhang Y M, Jia R X, Lu H L and Wang Y H 2012 Chin. Phys. B 21 087701
|
[18] |
Xu J P, Chen W B, Lai P T, Li Y P and Chan C L 2007 Chin. Phys. 16 0529
|
[19] |
Merckling C, Sun X, Alian A, Brammertz G, Afanas’ev V V, Hoffmann T Y, Heyns M, Caymax M and Dekoster J 2011 Jpn. J. Appl. Phys. 109 073719
|
[20] |
Xiao K, Xu Q Z, Ye K H, Liu Z Q, Fu L M, Li N, Chen Y B and Su Y Z 2013 Electrochem. Solid-State Lett. 2 51
|
[21] |
Li C, Yang X, Liu Y, Zhao Z and Qian Y 2003 J. Cryst. Growth 255 342
|
[22] |
Garbassi F 1980 Surf. Interface Anal. 2 165
|
[23] |
McDonnell S, Zhernokletov D M, Kirk A P, Kim J and Wallace R M 2011 Appl. Surf. Sci. 257 8747
|
[24] |
Lay T S, Huang K H, Hung W H, Hong M, Kwo J and Mannaerts J P 2001 Solid-State Electron. 45 423
|
[25] |
Chiu H C, Huang Y C, Chen C W and Chang L B 2008 IEEE Trans. Electron. Devices 55 721
|
[26] |
Pérotin M, Coudray P, Gouskov L, Luquet H, Llinarés C, Bonnet J J, Soonckindt L and Lambert B 1994 J. Electron. Mater. 23 7
|
[27] |
Lin C L, Su Y K, Se T S and Li W L 1998 Jpn. J. Appl. Phys. 37 L1543
|
[28] |
Kim E J, Wang L, Asbeck P M, Saraswat K C and McIntyre P C 2010 Appl. Phys. Lett. 96 012906
|
[29] |
Xie R and Zhu C 2007 IEEE Electron. Device Lett. 28 976
|
[30] |
Dalapati G K, Chia C K, Mahata C, Krishnamoorthy S, Tan C C, Tan H R, Maiti C K and Chi D 2013 IEEE Trans. Electron. Devices 60 192
|
[31] |
Nicollian E H and Goetzberger A 1967 Bell Syst. Tech. J. 46 1055
|
[32] |
Chiou Y K, Chang C H, Wang C C, Lee K Y, Wu T B, Kwo R and Hong M 2007 J. Electrochem. Soc. 154 G99
|
[33] |
Dalapati G K, Tong Y, Loh W Y, Mun H K and Cho B J 2007 IEEE Trans. Electron. Devices 54 1831
|
[34] |
Suri R, Kirkpatrick C J, Lichtenwalner D J and Misra V 2010 Appl. Phys. Lett. 96 042903
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|