Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(1): 015201    DOI: 10.1088/1674-1056/23/1/015201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Exploration of the Townsend regime by discharge light emission in a gas discharge device

Hilal Yucel Kurt
Gazi University, Faculty of Sciences, Department of Physics, 06500 Ankara, Turkey
Abstract  The Townsend discharge mechanism has been explored in a planar microelectronic gas discharge device (MGDD) with different applied voltages U and interelectrode distance d under various pressures in air. The anode and the cathode of the MGDD are formed by a transparent SnO2 covered glass and a GaAs semiconductor, respectively. In the experiments, the discharge is found to be unstable just below the breakdown voltage Ub, whereas the discharge passes through a homogeneous stable Townsend mode beyond the breakdown voltage. The measurements are made by an electrical circuit and a CCD camera by recording the currents and light emission (LE) intensities. The intensity profiles, which are converted from the 3D light emission images along the semiconductor diameter, have been analysed for different system parameters. Different instantaneous conductivity σt regimes are found below and beyond the Townsend region. These regimes govern the current and spatio-temporal LE stabilities in the plasma system. It has been proven that the stable LE region increases up to 550 Torr as a function of pressure for small d. If the active area of the semiconductor becomes larger and the interlectrode distance d becomes smaller, the stable LE region stays nearly constant with pressure.
Keywords:  Townsend discharge      breakdown      microelectronic gas discharge device      semiconductor cathode  
Received:  08 March 2013      Revised:  18 April 2013      Accepted manuscript online: 
PACS:  52.80.Dy (Low-field and Townsend discharges)  
  52.77.-j (Plasma applications)  
  73.61.Ey (III-V semiconductors)  
Fund: Project supported by Gazi University BAP Research Project, Turkey (Grant Nos. 05/2012-47 and 05/2012-72).
Corresponding Authors:  Hilal Yucel Kurt     E-mail:  hyucelkurt@gmail.com

Cite this article: 

Hilal Yucel Kurt Exploration of the Townsend regime by discharge light emission in a gas discharge device 2014 Chin. Phys. B 23 015201

[1] Portsel L M, Lodygin A N and Astrov Yu A 2009 J. Phys. D: Appl. Phys. 42 235208
[2] Kogelschatz U 2003 Plasma Chem. Plasma Process. 23 1
[3] Park S J and Eden J G 2002 Appl. Phys. Lett. 81 4127
[4] Ouyang J T, Duan X X, Xu S W and He F 2012 Chin. Phys. Lett. 29 025201
[5] Xuechen L, Dongying N, Zengqian Y, Tongzhen F and Long W 2012 Phys. Plasmas 19 083505
[6] Kurt E and Serdal A 2012 Energ. Convers. Manage. 63 55
[7] Li X C, Dong L F and Wang L 2005 Chin. Phys. 14 1418
[8] Mu X D, Mu Z X, Wang C, Jia L and Dong C 2011 Acta Phys. Sin. 60 015204 (in Chinese)
[9] Grill A 1994 Cold Plasma in Materials Fabrication: from Fundamentals to Applications (New York: IEEE Press)
[10] Lieberman M A and Lichtenberg A J 1994 Principles of Plasma Discharges and Materials Processing (2nd edn.) (New York: Wiley)
[11] Lodygin A N, Portsel L M and Astrov Y A 2012 Contrib. Plasma Phys. 52 682
[12] Portsel L M, Astrov Yu A, Reimann I, Ammelt E and Purwins H G 1999 J. Appl. Phys. 85 3960
[13] Fillard J 1988 Rev. Phys. Appl. 23 765
[14] Kurt H Y, Sadiq Y and Salamov B G 2008 Phys. Status. Solidi. A 205 321
[15] Salamov B G and Kurt H Y 2005 J. Phys. D: Appl. Phys. 38 682
[16] Gurevich L, Kittel S, Hergenroder R, Astrov Yu A, Portsel L M, Lodygin A N, Tolmachev V A and Ankudinov A V 2010 J. Phys. D: Appl. Phys. 43 275302
[17] Raizer Yu P 1991 Gas Discharge Physics (Berlin: Springer)
[18] Liang Z, Luo H Y, Wang X X, Bo L V, Guang Z C and Wang L M 2008 Chin. Phys. Lett. 25 2136
[19] Luo H, Liang Z, Lv B, Wang X, Guan Z and Wang L 2007 Appl. Phys. Lett. 91 221504
[20] Petrovic Z L and Phelps A V 1997 Phys. Rev. E 56 5920
[21] Haiyun L, Zhuo L, Xinxin W, Zhicheng G and Liming W 2010 J. Phys. D: Appl. Phys. 43 155201
[22] Mokrov M S and Raizer Yu P 2008 Plasma Sources Sci. Technol. 17 035031
[23] Kurt H Y, Inalöz A and Salamov B G 2010 Optoelectronics and Advanced Materials - Rapid Communications 4 205
[24] Li X C, Niu D Y, Xu L F, Jia P Y and Chang Y Y 2012 Chin. Phys. B 21 075204
[25] Golubovskii Yu B, Maiorov V A, Li P and Lindmayer M 2006 J. Phys. D: Appl. Phys. 39 1574
[26] Segur P and Massines F 2000 13th Int. Conf. on Gas Discharges and Their Applications, September 3–8, 2000, Glasgow, UK, p. 15
[27] Golubovskii Yu B, Maiorov V A, Behnke J and Behnke J F 2002 J. Phys. D: Appl. Phys. 35 751
[28] Gherardi N, Croquesel E, Naude N, Veis P and Massines F 2002 Proc. 8th Int. Symp. on High Pressure Low Temperature Plasma Chemistry (HAKONE VIII), July 21–25, 2001, Puhajarve, Estonia
[29] Kurt E, Kurt H and Bayhan U 2009 Cent. Eur. J. Phys. 7 123
[30] Golubovskii Yu B, Maiorov V A, Behnke J and Behnke J F 2003 J. Phys. D: Appl. Phys. 36 39
[31] Kurt H, Koc E and Salamov B G 2010 IEEE Transaction on Plasma Science 38 137
[32] Asinovski E I, Kirillin AV and Rakovets A A 1988 Cryogenic Discharges (Moscow: Nauka) (in Russian)
[33] Portsel L M, Astrov Yu A, Reimann I and Purwins H G 1997 J. Appl. Phys. 81 1077
[34] Kurt H, Cetin S and Salamov B G 2011 IEEE Transaction on Plasma Science 39 1086
[35] Kiymaz S 2001 Kízilötesi Görüntü Çeviricideki Elektrot Yüzeylerinin İcelenmesi (Master Dissertation) (Ankara: Gazi University Institute of Science and Technology) (in Turkish)
[36] Portsel L M, Lodygin A N and Astrov Yu A 2009 J. Phys. D: Appl. Phys. 42 235208
[37] Meek J M and Craggs J D 1978 Electrical Breakdown in Gases (Chichester: Wiley)
[38] Penache M C 2002 Study of High-Pressure Glow Discharges Generated by Micro-Structured Electrode (MSE) Arrays (Ph. D. Dissertation) (Frankfurt am Main)
[39] Dakin T W, Gerhold J and Krasucki Z 1977 Proceedings of the International Conference on Large High-Voltage Electric Systems, 1977, Paris, p. 1
[40] Lisovskiy V A, Yakovin S D and Yegorenkov V D 2000 J. Phys. D: Appl. Phys. 33 2722
[41] Sadiq Y, Kurt H Y, Albarzanji A O, Alekperov S D and Salamov B G 2009 Solid-State Electron. 53 1009
[42] Sadiq Y, Kurt H Y and Salamov B G 2008 J. Phys. D: Appl. Phys. 41 225204
[43] Gao F, Li X C, Zhao S X and Wang Y N 2012 Chin. Phys. B 21 075203
[1] Design optimization of high breakdown voltage vertical GaN junction barrier Schottky diode with high-K/low-K compound dielectric structure
Kuiyuan Tian(田魁元), Yong Liu(刘勇), Jiangfeng Du(杜江锋), and Qi Yu(于奇). Chin. Phys. B, 2023, 32(1): 017306.
[2] A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance
Pei Shen(沈培), Ying Wang(王颖), and Fei Cao(曹菲). Chin. Phys. B, 2022, 31(7): 078501.
[3] Effect of the target positions on the rapid identification of aluminum alloys by using filament-induced breakdown spectroscopy combined with machine learning
Xiaoguang Li(李晓光), Xuetong Lu(陆雪童), Yong Zhang(张勇),Shaozhong Song(宋少忠), Zuoqiang Hao(郝作强), and Xun Gao(高勋). Chin. Phys. B, 2022, 31(5): 054212.
[4] Lateral β-Ga2O3 Schottky barrier diode fabricated on (-201) single crystal substrate and its temperature-dependent current-voltage characteristics
Pei-Pei Ma(马培培), Jun Zheng(郑军), Ya-Bao Zhang(张亚宝), Xiang-Quan Liu(刘香全), Zhi Liu(刘智), Yu-Hua Zuo(左玉华), Chun-Lai Xue(薛春来), and Bu-Wen Cheng(成步文). Chin. Phys. B, 2022, 31(4): 047302.
[5] Fast-switching SOI-LIGBT with compound dielectric buried layer and assistant-depletion trench
Chunzao Wang(王春早), Baoxing Duan(段宝兴), Licheng Sun(孙李诚), and Yintang Yang(杨银堂). Chin. Phys. B, 2022, 31(4): 047304.
[6] Modeling of high permittivity insulator structure with interface charge by charge compensation
Zhi-Gang Wang(汪志刚), Yun-Feng Gong(龚云峰), and Zhuang Liu(刘壮). Chin. Phys. B, 2022, 31(2): 028501.
[7] Effects of pulse energy ratios on plasma characteristics of dual-pulse fiber-optic laser-induced breakdown spectroscopy
Yu-Hua Hang(杭玉桦), Yan Qiu(邱岩), Ying Zhou(周颖), Tao Liu(刘韬), Bin Zhu(朱斌), Kaixing Liao(廖开星), Ming-Xin Shi(时铭鑫), and Fei Xue(薛飞). Chin. Phys. B, 2022, 31(2): 024212.
[8] Femtosecond laser-induced Cu plasma spectra at different laser polarizations and sample temperatures
Yitong Liu(刘奕彤), Qiuyun Wang(王秋云), Luyun Jiang(蒋陆昀), Anmin Chen(陈安民), Jianhui Han(韩建慧), and Mingxing Jin(金明星). Chin. Phys. B, 2022, 31(10): 105201.
[9] Terminal-optimized 700-V LDMOS with improved breakdown voltage and ESD robustness
Jie Xu(许杰), Nai-Long He(何乃龙), Hai-Lian Liang(梁海莲), Sen Zhang(张森), Yu-De Jiang(姜玉德), and Xiao-Feng Gu(顾晓峰). Chin. Phys. B, 2021, 30(6): 067303.
[10] Design and simulation of AlN-based vertical Schottky barrier diodes
Chun-Xu Su(苏春旭), Wei Wen(温暐), Wu-Xiong Fei(费武雄), Wei Mao(毛维), Jia-Jie Chen(陈佳杰), Wei-Hang Zhang(张苇杭), Sheng-Lei Zhao(赵胜雷), Jin-Cheng Zhang(张进成), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(6): 067305.
[11] A super-junction SOI-LDMOS with low resistance electron channel
Wei-Zhong Chen(陈伟中), Yuan-Xi Huang(黄元熙), Yao Huang(黄垚), Yi Huang(黄义), and Zheng-Sheng Han(韩郑生). Chin. Phys. B, 2021, 30(5): 057303.
[12] Improved 4H-SiC UMOSFET with super-junction shield region
Pei Shen(沈培), Ying Wang(王颖), Xing-Ji Li(李兴冀), Jian-Qun Yang(杨剑群), Cheng-Hao Yu(于成浩), and Fei Cao(曹菲). Chin. Phys. B, 2021, 30(5): 058502.
[13] Novel Si/SiC heterojunction lateral double-diffused metal-oxide semiconductor field-effect transistor with p-type buried layer breaking silicon limit
Baoxing Duan(段宝兴), Xin Huang(黄鑫), Haitao Song (宋海涛), Yandong Wang(王彦东), and Yintang Yang(杨银堂). Chin. Phys. B, 2021, 30(4): 048503.
[14] Novel fast-switching LIGBT with P-buried layer and partial SOI
Haoran Wang(王浩然), Baoxing Duan(段宝兴), Licheng Sun(孙李诚), and Yintang Yang(杨银堂). Chin. Phys. B, 2021, 30(2): 027302.
[15] Asymmetric dynamic behaviors of magnetic domain wall in trapezoid-cross-section nanostrip
Xiao-Ping Ma(马晓萍), Hong-Guang Piao(朴红光), Lei Yang(杨磊), Dong-Hyun Kim, Chun-Yeol You, Liqing Pan(潘礼庆). Chin. Phys. B, 2020, 29(9): 097502.
No Suggested Reading articles found!