INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Organic photovoltaic cells with copper (Ⅱ) tetra-methyl substituted phthalocyanine |
Xu Zong-Xiang (许宗祥)a, Roy V. A. L.b |
a Department of Chemistry, South University of Science and Technology of China, Shenzhen 518055, China; b Center of Super Diamond and Advanced Films (COSDAF), Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China |
|
|
Abstract Efficient heterojunction organic photovoltaic (OPV) cells are fabricated based on copper tetra-methyl phthalocyanine (CuMePc) as donor and fullerene (C60) as acceptor. The power conversion efficiency of CuMePc/C60 OPV cell (2.52%) is increased by 88% compared with that of the non-peripheral substituted copper phthalocyanine (CuPc)/C60 OPV cell (1.34%). The introduction of methyl substituent leads to stronger π–π interaction of CuMePc (~ 3.5 Å) than that of CuPc (~ 3.8 Å). The efficiency improvement is attributed to the enhanced carrier mobility of CuMePc thin film (1.1×10-3 cm2/V·s) and better film morphology by introducing methyl groups into the periphery of CuPc molecule.
|
Received: 05 June 2013
Revised: 11 July 2013
Accepted manuscript online:
|
PACS:
|
85.60.-q
|
(Optoelectronic devices)
|
|
73.61.Jc
|
(Amorphous semiconductors; glasses)
|
|
Fund: Project supported by the Special Funds for the Development of Strategic Emerging Industries in Shenzhen City, China (Grant No. JCYJ20120830154526537), Start-up Funding of the South University of Science and Technology of China, and the Strategic Research Grant of the City University of Hong Kong (Grant No. 7002724). |
Corresponding Authors:
Xu Zong-Xiang
E-mail: xu.zx@sustc.edu.cn
|
Cite this article:
Xu Zong-Xiang (许宗祥), Roy V. A. L. Organic photovoltaic cells with copper (Ⅱ) tetra-methyl substituted phthalocyanine 2013 Chin. Phys. B 22 128505
|
[1] |
Tang C W 1986 Appl. Phys. Lett. 48 183
|
[2] |
Nunzi J M 2002 C. R. Physique 3 523
|
[3] |
Angmo D, Hösel M and Krebs F C 2012 Sol. Energy Mater. Sol. Cells 107 329
|
[4] |
Chen W B, Xu Z X, Li K, Chui S S Y, Roy V A L, Lai P T and Che C M 2012 Chin. Phys. B 21 078401
|
[5] |
Fan X, Guo S S, Fang G J, Zhan C M, Wang H, Zhang Z G and Li Y F 2013 Sol. Energy Mater. Sol. Cells 113 135
|
[6] |
Li Y F 2012 Acc. Chem. Res. 45 723
|
[7] |
Honda S, Ohkita H, Benten H and Ito S 2011 Adv. Energy Mater. 1 588
|
[8] |
Chan M Y, Lai S L, Fung M K, Lee C S and Lee S T 2007 Appl. Phys. Lett. 90 023504
|
[9] |
Chen W B, Xiang H F, Xu Z. X, Yan B P, Roy V A L, Che C M and Lai P T 2007 Appl. Phys. Lett. 91 191109
|
[10] |
He Z C, Zhong C M, Su S J, Xu M, Wu H B and Cao Y 2012 Nat. Photon. 6 591
|
[11] |
Bruder I, Schöneboom J, Dinnebier R, Ojala A, Schäfer S, Sens R, Erk P and Weis J 2010 Org. Electron. 11 377
|
[12] |
Chauhan K V, Sullivan P, Yang J L and Jones T S 2010 J. Phys. Chem. C 114 3304
|
[13] |
Mutolo K L, Mayo E I, Rand B P, Forrest S R and Thompson M E 2006 J. Am. Chem. Soc. 128 8108
|
[14] |
Bailey-Salzman R F, Rand B P and Forrest S R 2007 Appl. Phys. Lett. 91 013508
|
[15] |
Wang P, Guo R D, Chen Y, Yue S Z, Zhao Y and Liu S Y 2013 Acta Phys. Sin. 62 088801 (in Chinese)
|
[16] |
Li Q, Li H Q, Zhao J, Huang J and Yu J S 2013 Acta Phys. Sin. 62 128803 (in Chinese)
|
[17] |
Rella R, Rizzo A, Licciulli A, Siciliano P, Troisi L and Valli L 2002 Mater. Sci. Eng. C 22 439
|
[18] |
He J J, Hagfeldt A, Lindquist S E, Grennberg H, Korodi F, Sun L C and Åkermark B 2001 Langmuir 17 2743
|
[19] |
Li Z Y and Lieberman M 2001 Inorg. Chem. 40 932
|
[20] |
Rey B D, Martínez-Díaz M V, Barberá J and Torres T 2000 J. Porphyrins Phthalocyanines 4 569
|
[21] |
Hori T, Miyake Y, Yamasaki N, Yoshida H, Fujii A, Shimizu Y and Ozaki M 2010 Appl. Phys. Express 3 101602
|
[22] |
Xu Z X, Roy V A L, Low K H and Che C M 2011 Chem. Commun. 47 9654
|
[23] |
Low K H, Xu Z X, Xiang H F, Chui S S Y, Roy V A L and Che C M 2011 Chem. Asian J. 6 3223
|
[24] |
Lin L B, Jenekhe S A and Borsenberger P M 1996 Appl. Phys. Lett. 69 3495
|
[25] |
Lin L B, Young R H, Mason M G, Jenekhe S A and Borsenberger P M 1998 Appl. Phys. Lett. 72 864
|
[26] |
Kepler R G, Beeson P M, Jacobs S J, Anderson R A, Sinclair M B, Valencia V S and Cahill P A 1995 Appl. Phys. Lett. 66 3618
|
[27] |
Lau K M, Tang J X, Sun H Y, Lee C S, Lee S T and Yan D H 2006 Appl. Phys. Lett. 88 173513
|
[28] |
Distefano G, Colle M D, Jones D, Zambianchi M, Favaretto L and Modelli A 1993 J. Phys. Chem. 97 3504
|
[29] |
Torsi L, Dodabalapur A, Rotherg L J, Fung A W P and Katz H E 1996 Science 272 1462
|
[30] |
Yang F, Lunt R R and Forrest S R 2008 Appl. Phys. Lett. 92 053310
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|