Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(1): 014702    DOI: 10.1088/1674-1056/ab5789
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Mechanism from particle compaction to fluidization of liquid-solid two-phase flow

Yue Zhang(张悦)1, Jinchun Song(宋锦春)1, Lianxi Ma(马连喜)2, Liancun Zheng(郑连存)3, Minghe Liu(刘明贺)4
1 School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China;
2 Department of Physics, Blinn College, Bryan, TX 77805, USA;
3 School of Mathematics and Physics of University of Science and Technology Beijing, Beijing 100083, China;
4 School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, China
Abstract  A new model of particle yield stress including cohesive strength is proposed, which considers the friction and cohesive strength between particles. A calculation method for the fluidization process of liquid-solid two-phase flow in compact packing state is given, and the simulation and experimental studies of fluidization process are carried out by taking the sand-water two-phase flow in the jet dredging system as an example, and the calculation method is verified.
Keywords:  liquid-solid flow      two-phase flow      cohesive strength      yield stress  
Received:  27 May 2019      Revised:  22 September 2019      Accepted manuscript online: 
PACS:  47.57.Gc (Granular flow)  
  47.61.Jd (Multiphase flows)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11772046) and the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 51705342).
Corresponding Authors:  Yue Zhang     E-mail:  zhangyue12342280@sina.com

Cite this article: 

Yue Zhang(张悦), Jinchun Song(宋锦春), Lianxi Ma(马连喜), Liancun Zheng(郑连存), Minghe Liu(刘明贺) Mechanism from particle compaction to fluidization of liquid-solid two-phase flow 2020 Chin. Phys. B 29 014702

[1] Hosseini S H, Zivdar M and Rahimi R 2009 Che. Eng. Proce. 48 1539
[2] Seyyed H H, Goodarz A, Rahbar R, Mortaza Z and Mohsen N E 2010 Powder Technol. 200 202
[3] Abbas D, Chao Z and Jingxu Z 2015 Particuology 21 48
[4] Riccardo A, Alberto Z, Alessandra P, Paolo C and Andrea S 2011 Che. Eng. Sci. 66 548
[5] Pierre J 2015 C. R. Phys. 16 62
[6] Riccardo A, Andrea S and Paolo C 2009 Che. Eng. Sci. 64 4040
[7] Sinclair J L and Jackson R 1989 AIChE J. 35 1473
[8] Upadhyay M and Park J H 2015 Powder Technol. 272 260
[9] Wu C L and Zhan J M 2005 Chin. Phys. B 14 0620
[10] Mehran E, Salman M and Shahrokh S 2016 Int. J. Therm. Sci. 102 111
[11] Sofiane B 2008 Ind. Eng. Chem. Res. 47 8926
[12] Ng B H, Ding Y L and Ghadiri M 2008 Che. Eng. Sci. 63 1733
[13] Maryam A, Mohammad S S, Hamid R G and Günter W 2015 Powder Technol. 274 379
[14] Wang S Y, Li X, Lu H L a, Yu L, Sun D, He Y R and Ding Y L 2009 Powder Technol. 196 184
[15] Srujal S, Kari M, Sirpa K and Timo H 2015 Particuology 18 66
[16] Srujal S, Kari M, Sirpa K, Jouni R and Timo H 2015 Powder Technol. 274 239
[17] Abbas D, Zhu J X and Zhang C 2014 Powder Technol. 260 52
[18] Wang S Y, Zhao Y Q, Li X Q, Liu L L, Wei L X, Liu Y and Gao J S 2014 Adv. Powder Technol. 25 1103
[19] Li P, Zhang X H and Lu X B 2018 Che. Eng. Sci. 181 1
[20] Passalacqu A and Marmo L 2009 Che. Eng. Sci. 64 2795
[21] Ding J and Gidaspow D 1990 AICHE J. 36 523
[22] Chapman S and Cowling T G 1979 The Mathematical Theory of Non-Uniform Gases (London: Cambridge University Press)
[23] Gidaspow D 1994 Multiphase Flow and Fluidization Continuum and Kinetic Theory Descriptions (San Diego: Academic)
[24] Savage S B and Jeffrey D J 1981 J. Fluid Mech. 110 255
[25] Jenkins J T and Savage S B 1983 J. Fluid Mech. 130 187
[26] Lun C K K, Savage F B, Jeffrey D J and Chepurniy N 1984 J. Fluid Mech. 140 223
[27] Syamlal M, Rogers W and O'Brien T J 1993 MFIX Documentation: Volume 1 Theory Guide, Technical Report DOE/METC-9411004 NTIS/DE9400087 (Springfield: National Technical Information Service)
[28] Johnson P C and Jackson R 1987 J. Fluid Mech. 176 67
[29] Tang C B 1981 J. Sediment Res. 2 60 (in Chinese)
[1] Impact mechanism of gas temperature in metal powder production via gas atomization
Peng Wang(汪鹏), Jing Li(李静), Xin Wang(王欣), Bo-Rui Du(杜博睿), Shi-Yuan Shen(申世远), Xue-Yuan Ge(葛学元), and Miao-Hui Wang(王淼辉). Chin. Phys. B, 2021, 30(5): 054702.
[2] Gradient-augmented hybrid interface capturing method for incompressible two-phase flow
Zheng Fu(付峥), Shi-Yu Wu(吴士玉), Kai-Xin Liu(刘凯欣). Chin. Phys. B, 2016, 25(6): 064701.
[3] Three-dimensional multi-relaxation-time lattice Boltzmann front-tracking method for two-phase flow
Hai-Qiong Xie(谢海琼), Zhong Zeng(曾忠), Liang-Qi Zhang(张良奇). Chin. Phys. B, 2016, 25(1): 014702.
[4] Stacking fault energy, yield stress anomaly, and twinnability of Ni3Al: A first principles study
Liu Li-Li (刘利利), Wu Xiao-Zhi (吴小志), Wang Rui (王锐), Li Wei-Guo (李卫国), Liu Qing (刘庆). Chin. Phys. B, 2015, 24(7): 077102.
[5] Multi-scale complexity entropy causality plane: An intrinsic measure for indicating two-phase flow structures
Dou Fu-Xiang (窦富祥), Jin Ning-De (金宁德), Fan Chun-Ling (樊春玲), Gao Zhong-Ke (高忠科), Sun Bin (孙斌). Chin. Phys. B, 2014, 23(12): 120502.
[6] Markov transition probability-based network from time series for characterizing experimental two-phase flow
Gao Zhong-Ke (高忠科), Hu Li-Dan (胡沥丹), Jin Ning-De (金宁德). Chin. Phys. B, 2013, 22(5): 050507.
[7] Multi-relaxation-time lattice Boltzmann front tracking method for two-phase flow with surface tension
Xie Hai-Qiong (谢海琼), Zeng Zhong (曾忠), Zhang Liang-Qi (张良奇), Liang Gong-You (梁功有), Hiroshi Mizuseki, Yoshiyuki Kawazoe. Chin. Phys. B, 2012, 21(12): 124703.
[8] Complex network analysis in inclined oil--water two-phase flow
Gao Zhong-Ke(高忠科) and Jin Ning-De(金宁德) . Chin. Phys. B, 2009, 18(12): 5249-5258.
[9] A hybrid scheme for computing incompressible two-phase flows
Zhou Jun(周军), Cai Li(蔡力), and Zhou Feng-Qi(周凤岐). Chin. Phys. B, 2008, 17(5): 1535-1544.
No Suggested Reading articles found!