|
|
Overrun phenomenon and neutron yield in Coulomb explosion of deuterated alkane clusters driven by intense laser field |
Hong-Yu Li(李洪玉), Mei-Dong Huang(黄美东), Ming Kang(康明), De-Jun Li(李德军) |
College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387, China |
|
|
Abstract By using a simplified Coulomb explosion model, the laser-driven Coulomb explosion processes of three deuterated alkane clusters, i.e., deuterated methane (CD4)N, ethane (C2D6)N and propane (C3D8)N clusters are simulated numerically. The overrun phenomenon that the deuterons overtake the carbon ions inside the expanding clusters, as well as the dependence of the energetic deuterons and fusion neutron yield on cluster size, is discussed in detail. Researches show that the average kinetic energy of deuterons and neutron yield generated in the Coulomb explosion of (C2D6)N cluster are higher than those of (CD4)N cluster with the same size, in qualitative agreement with the reported conclusions from the experiments of (C2H6)N and (CH4) N clusters. It is indicated that (C2D6)N clusters are superior to (CD4)N clusters as a target for the laser-induced nuclear fusion reaction to achieve a higher neutron yield. In addition, by comparing the relevant data of (C3D8)N cluster with those of (C2D6)N cluster with the same size, it is theoretically concluded that (C3D8)N clusters with a larger competitive parameter might be a potential candidate for improving neutron generation. This will provide a theoretical basis for target selection in developing experimental schemes on laser-driven nuclear fusion in the future.
|
Received: 26 January 2018
Revised: 03 April 2018
Accepted manuscript online:
|
PACS:
|
36.40.Wa
|
(Charged clusters)
|
|
52.50.Jm
|
(Plasma production and heating by laser beams (laser-foil, laser-cluster, etc.))
|
|
52.38.Kd
|
(Laser-plasma acceleration of electrons and ions)
|
|
25.45.-z
|
(2H-induced reactions)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No.11005080). |
Corresponding Authors:
Hong-Yu Li
E-mail: wlxylhy@mail.tjnu.edu.cn
|
Cite this article:
Hong-Yu Li(李洪玉), Mei-Dong Huang(黄美东), Ming Kang(康明), De-Jun Li(李德军) Overrun phenomenon and neutron yield in Coulomb explosion of deuterated alkane clusters driven by intense laser field 2018 Chin. Phys. B 27 063602
|
[1] |
Lamour E, Prigent C, Rozet J P and Vernhet D 2005 Nucl. Instrum. Method Phys. Res. B 235 408
|
[2] |
Deiss C, Rohringer N, Burgdörfer J, Lamour E, Prigent C, Rozet J P and Vernhet D 2006 Phys. Rev. Lett. 96 013203
|
[3] |
Zweiback J, Cowan T E, Hartley J H, Howell R, Wharton K B, Crane J K, Yanovsky V P, Hays G, Smith R A and Ditmire T 2002 Phys. Plasmas 9 3108
|
[4] |
Grillon G, Balcou Ph, Chambaret J P, Hulin D, Martino J, Moustaizis S, Notebaert L, Pittman M, Pussieux Th, Rousse A, Rousseau J Ph, Sebban S, Sublemontier O and Schmidt M 2002 Phys. Rev. Lett. 89 065005
|
[5] |
Ditmire T, Zweiback J and Yanovsky V P 1999 Nature 398 489
|
[6] |
Almazouzi A, Diaz de la Rubia T, Ishino S, Lam N Q, Singh B N, Trinkaus H, Victoria M and Zinkle S 1997 J. Nucl. Mater. 251 291
|
[7] |
Ditmire T, Bless S, Dyer G, Edens A, Grigsby W, Hays G, Madison K, Maltsev A, Colvin J, Edwards M J, Lee R W, Patel P, Price D, Remington B A, Sheppherd R, Wootton A, Zweiback J, Liang E and Kielty K A 2004 Radiat. Phys. Chem. 70 535
|
[8] |
He M Q, Cai H B, Zhang H, Dong Q L, Zhou C T, Wu S Z, Sheng Z M, Cao L H, Zheng C Y, Wu J F, Chen M, Pei W B, Zhu S P and He X T 2015 Phys. Plasmas 22 123103
|
[9] |
Barbarino M, Warrens M, Bonasera A, Lattuada D, Bang W, Quevedo H J, Consoli F, De Angelis R, Andreoli P, Kimura S, Dyer G, Bernstein A C, Hagel K, Barbui M, Schmidt K, Gaul E, E M, Natowitz J B and Ditmire T 2016 Int. J Mod. Phys. E 25 1650063
|
[10] |
Last I and Jortner J 2001 Phys. Rev. Lett. 87 033401
|
[11] |
Last I and Jortner J 2001 Phys. Rev. A 64 063201
|
[12] |
Madison K W, Patel P K, Price D, Edens A, Allen M, Cowan T E and Zweiback J 2004 Phys. Plasmas 11 270
|
[13] |
Bang W, Quevedo H J, Bernstein A C, Dyer G, Ihn Y S, Cortez J, Aymond F, Gaul E, Donovan M E, Barbui M, Bonasera A, Natowitz J B, Albright B J, Fernández J C and Ditmire T 2014 Phys. Rev. E 90 063109
|
[14] |
Lattuada D, Barbarino M, Bonasera A, Bang W, Quevedo H J, Warren M, Consoli F, De Angelis R, Andreoli P, Kimura S, Dyer G, Bernstein A C, Hagel K, Barbui M, Schmidt K, Gaul E, Donovan M E, Natowitz J B and Ditmire T 2016 Phys. Rev. C 93 045808
|
[15] |
Lu H Y, Liu J S, Wang C, Wang W T, Zhou Z L, Deng A H, Xia C Q, Xu Y, Leng Y X, Ni G Q, Li R X and Xu Z Z 2009 Phys. Plasmas 16 083107
|
[16] |
Lu H Y, Liu J S, Wang C, Wang W T, Zhou Z L, Deng A H, Xia C Q, Xu Y, Lu X M, Jiang Y H, Leng Y X, Liang X Y, Ni G Q, Li R X and Xu Z Z 2009 Phys. Rev. A 80 051201
|
[17] |
Zhang H, Lu H Y, Li S, Xu Y, Guo X Y, Leng Y X, Liu J S, Shen B F, Li R X and Xu Z Z 2014 Appl. Phys. Express 7 026401
|
[18] |
Liu J S, Lu H Y, Zhou Z L, Wang C, Li H Y, Xia C Q, Wang W T, Xu Y, Lu X M, Leng Y X, Liang X Y, Ni G Q, Li R X and Xu Z Z 2014 Chin. J. Phys. 52 524
|
[19] |
Li S, Zhou Z L, Tian Y, Lu H Y, Wang W T, Ju J J, Li H Y, Xu Y, Leng Y X, Ni G Q, Wang C and Liu J S 2013 Phys. Plasmas 20 043109
|
[20] |
Huang J B 2002 Handbook of Industrial Gases (Beijing:Chemical industry Press) p. 322 (in Chinese)
|
[21] |
Li H Y, Liu J S, Wang C, Ni G Q, Li R X and Xu Z Z 2006 Phys. Rev. A 74 023201
|
[22] |
Augst S, Meyerhofer D D, Strickland D and Chint S L 1991 J. Opt. Soc. Am. B 8 858
|
[23] |
Kumarappan V, Krishnamurthy M and and Mathur D 2001 Phys. Rev. Lett. 87 085005
|
[24] |
Cheng R, Zhang C Y, Fu L B and and Liu J 2015 J. Phys. B:At. Mol. Opt. Phys. 48 035601
|
[25] |
Symes D R, Hohenberger M, Henig A and Ditmire T 2007 Phys. Rev. Lett. 98 123401
|
[26] |
Yatsuhashi T and Nakashima N 2018 J. Photoch. Photobio. C 34 52
|
[27] |
Jorgensen W L, Madura J D and Swenson C J 1984 J. Am. Chem. Soc. 106 6642
|
[28] |
Bang W, Dyer G, Quevedo H J, Bernstein A C, Gaul E, Donovan M and Ditmire T 2013 Phys. Rev. E 87 023106
|
[29] |
Ren Y H, Li S Q, Zhang Y Y, T. Stephen D and Marshall B L 2015 Phys. Rev. Lett. 114 093401
|
[30] |
Bahk S W, Rousseau P, Planchon T A, Chvykov V, Kalintchenko G, Maksimchuk A, Mourou G A and Yanovsky V 2004 Opt. Lett. 29 2837
|
[31] |
Li H Y, Liu J S, Wang C, Ni G Q, Kim C J, Li R X and Xu Z Z 2007 J. Phys. B:At. Mol. Opt. Phys. 40 3941
|
[32] |
Boella E, Paradisi B P, D'Angola A, Coppa G, Silva L O and Coppa G 2016 J. Plasma Phys. 82 905820110
|
[33] |
Peano F, Fonseca R A and Silva L O 2005 Phys. Rev. Lett. 94 033401
|
[34] |
Li H Y, Liu J S, Wang C, Ni G Q, Li R X and Xu Z Z 2008 Chin. Phys. B 17 1237
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|