PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Prev
Next
|
|
|
First polar direct-drive exploding-pusher target experiments on the ShenGuang laser facility |
Bo Yu(余波)1,2, Jiamin Yang(杨家敏)1, Tianxuan Huang(黄天晅)1, Peng Wang(王鹏)1, Wanli Shang(尚万里)1, Xiumei Qiao(乔秀梅)3, Xuewei Deng(邓学伟)1, Zhanwen Zhang(张占文)1, Zifeng Song(宋仔峰)1, Qi Tang(唐琦)1, Xiaoshi Peng(彭晓世)1, Jiabin Chen(陈家斌)1, Yulong Li(理玉龙)1, Wei Jiang(蒋炜)1, Yudong Pu(蒲昱东)1, Ji Yan(晏骥)1, Zhongjing Chen(陈忠靖)1, Yunsong Dong(董云松)1, Wudi Zheng(郑无敌)3, Feng Wang(王峰)1, Shaoen Jiang(江少恩)1, Yongkun Ding(丁永坤)2,3, Jian Zheng(郑坚)2,4 |
1 Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900, China;
2 Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China;
3 Institute of Applied Physics and Computational Mathematics, Beijing 100088, China;
4 IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240, China |
|
|
Abstract Low density and low convergence implosion occurs in the exploding-pusher target experiment, and generates neutrons isotropically to develop a high yield platform. In order to validate the performance of ShenGuang (SG) laser facility and test nuclear diagnostics, all 48-beam lasers with an on-target energy of 48 kJ were firstly used to drive room-temperature, DT gas-filled glass targets. The optimization has been carried out and optimal drive uniformity was obtained by the combination of beam repointing and target. The final irradiation uniformity of less than 5% on polar direct-drive capsules of 540 μ in diameter was achieved, and the highest thermonuclear yield of the polar direct-drive DT fuel implosion at the SG was 1.04×1013. The experiment results show neutron yields severely depend on the irradiation uniformity and laser timing, and decrease with the increase of the diameter and fuel pressure of the target. The thin CH ablator does not impact the implosion performance, but the laser drive uniformity is important. The simulated results validate that the γ distribution laser design is reasonable and can achieve a symmetric pressure distribution. Further optimization will focus on measuring the symmetry of the hot spot by self-emission imaging, increasing the diameter, and decreasing the fuel pressure.
|
Received: 07 May 2019
Revised: 21 July 2019
Accepted manuscript online:
|
PACS:
|
52.57.-z
|
(Laser inertial confinement)
|
|
52.57.Fg
|
(Implosion symmetry and hydrodynamic instability (Rayleigh-Taylor, Richtmyer-Meshkov, imprint, etc.))
|
|
29.25.Dz
|
(Neutron sources)
|
|
02.60.Pn
|
(Numerical optimization)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11605178) and the Science Challenging Project, China (Grant Nos. JCKY2016212A505 and TZ2016001). |
Corresponding Authors:
Bo Yu
E-mail: yubobnu@163.com
|
Cite this article:
Bo Yu(余波), Jiamin Yang(杨家敏), Tianxuan Huang(黄天晅), Peng Wang(王鹏), Wanli Shang(尚万里), Xiumei Qiao(乔秀梅), Xuewei Deng(邓学伟), Zhanwen Zhang(张占文), Zifeng Song(宋仔峰), Qi Tang(唐琦), Xiaoshi Peng(彭晓世), Jiabin Chen(陈家斌), Yulong Li(理玉龙), Wei Jiang(蒋炜), Yudong Pu(蒲昱东), Ji Yan(晏骥), Zhongjing Chen(陈忠靖), Yunsong Dong(董云松), Wudi Zheng(郑无敌), Feng Wang(王峰), Shaoen Jiang(江少恩), Yongkun Ding(丁永坤), Jian Zheng(郑坚) First polar direct-drive exploding-pusher target experiments on the ShenGuang laser facility 2019 Chin. Phys. B 28 095203
|
[40] |
Zhao B, Hu G Y, Zheng J, et al. 2018 High Energy Dens. Phys. 28 1
|
[1] |
Soures J M, McCrory R L, Verdon C P, et al. 1996 Phys. Plasmas 3 2108
|
[41] |
Ramis R, Meyer-ter-Vehn J and Ramireza J 2009 Comput. Phys. Commun. 180 977
|
[2] |
Johnson M G, Zylstra A B, Bacher A, et al. 2017 Phys. Plasmas 24 041407
|
[42] |
Cao Z R, Miao W Y, Dong J J, et al. 2012 Acta Phys. Sin. 61 075213(in Chinese)
|
[3] |
Ellison C L, Whitley H D, Brown C R D, et al. 2018 Phys. Plasmas 25 072710
|
[4] |
Rygg J R, Frenje J A, Li C K, et al. 2008 Phys. Plasmas 15 034505
|
[5] |
Miles A R, Chung H K, Heeter R, et al. 2012 Phys. Plasmas 19 072702
|
[6] |
Rosenberg M J, Zylstr A B, Séguin F H, et al. 2016 High Energy Dens. Phys. 18 38
|
[7] |
Manuel M J E, Zylstra A B, Rinderknecht H G, et al. 2012 Rev. Sci. Instrum. 83 063506
|
[8] |
Rygg J R, Zylstra A B, Séguin F H, et al. 2015 Rev. Sci. Instrum. 86 116104
|
[9] |
Li C K, Seguin F H, Frenje J A, et al. 2010 Science 327 1231
|
[10] |
Manuel M J E, Li C K, Séguin F H, et al. 2012 Phys. Rev. Lett. 108 255006
|
[11] |
Craxton R S, Anderson K S, Boehly T R, et al. 2015 Phys. Plasmas 22 110501
|
[12] |
Boehly T R, Brown D L, Craxton R S, et al. 1997 Opt. Commun. 133 495
|
[13] |
Skupsky S, Marozas J A, Craxton R S, et al. 2004 Phys. Plasmas 11 2763
|
[14] |
Craxton R S, Marshall F J, M J Bonino, et al. 20052005 Phys. Plasmas 12 056304
|
[15] |
Garban-Labaune C, Fabre E, Max C E, et al. 1982 Phys. Rev. Lett. 48 1018
|
[16] |
Campbell E M, Ploeger W M, Lee P H, et al. 1980 Appl. Phys. Lett. 36 965
|
[17] |
Herrmann H W, Langenbrunner J R, Mack J M, et al. 2009 Phys. Plasmas 16 056312
|
[18] |
Frenje J A, Li C K, Séguin F H, et al. 2011 Phys. Rev. Lett. 107 122502
|
[19] |
Dodd E S, Benage J F, Kyrala G A, et al. 2012 Phys. Plasmas 19 042703
|
[20] |
Zylstra A B, Frenje J A, Grabowski P E, et al. 2015 Phys. Rev. Lett. 114 215002
|
[21] |
Haynam C A, Wegner P J, Auerbach J M, et al. 2007 Appl. Opt. 46 3276
|
[22] |
Rinderknecht H G, Sio H, Li C K, et al. 2014 Phys. Plasmas 21 056311
|
[23] |
Rosenberg M J, Rinderknecht H G, Hoffman N M, et al. 2014 Phys. Rev. Lett. 112 185001
|
[24] |
Rosenberg M J, Zylstra A B, Séguin F H, et al. 2014 Phys. Plasmas 21 122712
|
[25] |
Rinderknecht H G, Amendt P A, Rosenberg M J, et al. 2017 Nucl. Fusion 57 066014
|
[26] |
Rinderknecht H G, Rosenberg M J, Zylstra A B, et al. 2015 Phys. Plasmas 22 082709
|
[27] |
Larroche O, Rinderknecht H G and Rosenberg M J 2018 Phys. Rev. E 98 031201
|
[28] |
Casey D T, Sayre D B, Brune C R, et al. 2017 Nat. Phys. 13 1227
|
[29] |
Zheng W G, Wei X F, Zhu Q H, et al. 2017 Matter Radiat. At. Extremes 2 243
|
[30] |
Yang C L, Zhang R Z, Xu Q, et al. 2008 Appl. Opt. 47 1465
|
[31] |
Weilacher F, Radha P B, Collins T J, et al. 2015 Phys. Plasmas 22 032701
|
[32] |
Froula D H, Igumenshchev I V, Michel D T, et al. 2012 Phys. Rev. Lett. 108 125003
|
[33] |
Basko M 1996 Phys. Plasmas 3 4148
|
[34] |
Ramis R, Temporal M, Canaud B, et al. 2014 Phys. Plasmas 21 082710
|
[35] |
Song Z F, Tang Q, Chen J B, et al. 2015 High Power Laser Part. Beams 27 112005(in Chinese)
|
[36] |
Chen J B, Zheng Z J, Peng H S, et al. 2001 Rev. Sci. Instrum. 72 3534
|
[37] |
Wang F, Peng X S, Kang D G, et al. 2013 Chin. Phys. B 22 115204
|
[38] |
Ramis R, Schmalz J and Meyer-ter-Vehn J 1988 Comput. Phys. Commun. 49 475
|
[39] |
Schurtz G P, Nicolai P D and Busquet M 2000 Phys. Plasmas 7 4238
|
[40] |
Zhao B, Hu G Y, Zheng J, et al. 2018 High Energy Dens. Phys. 28 1
|
[41] |
Ramis R, Meyer-ter-Vehn J and Ramireza J 2009 Comput. Phys. Commun. 180 977
|
[42] |
Cao Z R, Miao W Y, Dong J J, et al. 2012 Acta Phys. Sin. 61 075213(in Chinese)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|