Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(7): 077901    DOI: 10.1088/1674-1056/28/7/077901
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Secondary electron yield suppression using millimeter-scale pillar array and explanation of the abnormal yield-energy curve

Ming Ye(叶鸣)1,2, Peng Feng(冯鹏)1, Dan Wang(王丹)1, Bai-Peng Song(宋佰鹏)3, Yong-Ning He(贺永宁)1, Wan-Zhao Cui(崔万照)4
1 School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China;
2 Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China;
3 State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China;
4 National Key Laboratory of Science and Technology on Space Microwave, China Academy of Space Technology, Xi'an 710100, China
Abstract  

The phenomenon of secondary electron emission is of considerable interest in areas such as particle accelerators and on-board radio frequency (RF) components. Total secondary electron yield (TSEY) is a parameter that is frequently used to describe the secondary electron emission capability of a material. It has been widely recognized that the TSEY vs. primary electron energy curve has a single-hump shape. However, the TSEY-energy curve with a double-hump shape was also observed experimentally–this anomaly still lacks explanation. In this work, we explain this anomaly with the help of a millimetre-scale (mm-scale) silver pillar array fabricated by three-dimensional (3D) printing technology. The TSEY-energy curve of this pillar array as well as its flat counterpart is obtained using sample current method. The measurement results show that for the considered primary electron energy (40-1500 eV), the pillar array can obviously suppress TSEY, and its TSEY-energy curve has an obvious double-hump shape. Through Monte Carlo simulations and electron beam spot size measurements, we successfully attribute the double-hump effect to the dependence of electron beam spot size on the primary electron energy. The observations of this work may be of help in determining the TSEY of roughened surface with characteristic surface structures comparable to electron beam spot size. It also experimentally confirms the TSEY suppression effect of pillar arrays.

Keywords:  secondary electron emission      pillar array      total secondary electron yield suppression  
Received:  13 February 2019      Revised:  22 April 2019      Accepted manuscript online: 
PACS:  79.20.Hx (Electron impact: secondary emission)  
  29.20.-c (Accelerators)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. U1832190, 61501364, U1537211, and 11705142).

Corresponding Authors:  Ming Ye, Yong-Ning He     E-mail:  yeming057@xjtu.edu.cn;yongning@xjtu.edu.cn

Cite this article: 

Ming Ye(叶鸣), Peng Feng(冯鹏), Dan Wang(王丹), Bai-Peng Song(宋佰鹏), Yong-Ning He(贺永宁), Wan-Zhao Cui(崔万照) Secondary electron yield suppression using millimeter-scale pillar array and explanation of the abnormal yield-energy curve 2019 Chin. Phys. B 28 077901

[1] Furman M A and Pivi M T F 2012 Phys. Rev. Spec. Top. Accel. Beams 5 124404
[2] Calatroni S, Valdivieso E G, Neupert H, Nistor V, Fontenla A T P, Taborelli M, Chiggiato P, Malyshev O and Valizadeh R 2017 Phys. Rev. Accel. Beams 20 113201
[3] Bronchalo E, Coves Á, Mata R, Gimeno B, Montero I, Galán L, Boria V E, Mercadé L and Sanchís K E 2016 IEEE Trans. Electron Devices 63 3270
[4] Li Y, Ye M, He Y N, Cui W Z and Wang D 2017 Phys. Plasmas 24 113505
[5] Jin C, Ottaviano A and Raitses Y 2017 J. Appl. Phys. 122 173301
[6] Pinto P C, Calatroni S, Neupert H, Letant D D, Edwards P, Chiggiato P, Taborelli M, Vollenberg W, Yin V C, Colaux J L and Lucas S 2013 Vacuum 98 29
[7] Suharianto, Michizono S, Saito Y, Yamano Y and Kobayashi S 2007 Vacuum 81 799
[8] Zhang H B, Hu X C, Wang R, Cao M, Zhang N and Cui W Z 2012 Rev. Sci. Instrum. 83 066105
[9] Ruzic D, Moore R, Manos D and Cohen S 1982 J. Vac. Sci. Technol. 20 1313
[10] Cao M, Zhang N, Hu T C, Wang F and Cui W Z 2015 J. Phys. D: Appl. Phys. 48 055501
[11] Ye M, He Y N, Hu S G, Hu T C, Yang J and Cui W Z 2013 J. Appl. Phys. 113 074904
[12] Ye M, Wang D and He Y N 2017 J. Appl. Phys. 121 124901
[13] He Y N, Peng W B, Cui W Z, Ye M, Zhao X L and Wang D 2016 AIP Adv. 6 025122
[14] Ye M, He Y N, Hu S G, Yang J and Wang R 2013 J. Appl. Phys. 114 104905
[15] Wang D, He Y N, Ye M, Peng W B and Cui W Z 2017 J. Appl. Phys. 122 153302
[16] Swanson C and Kaganovich I D 2016 J. Appl. Phys. 120 213302
[17] Valizadeh R, Malyshev O B, Wang S, Sian T, Cropper M D and Sykes N 2017 Appl. Surf. Sci. 404 370
[18] Patino M, Raitses Y and Wirz R 2016 Appl. Phys. Lett. 109 201602
[19] Mata R, Bañón D, Socuellamos J M, Gimeno B and Boria V D 2017 Proceedings of 9th International Workshop on Multipactor, Corona and Passive Intermodulation (MULCOPIM'17) April 5-7, 2017 Noordwijk, The Netherlands, Session 8B
[20] Walker C G H, El-Gomati M M, Assa'd A M D and Zadražil M 2008 Scanning 30 365
[21] Yu S, Jeong T, Yi W, Lee J, Jin S, Heo J and Kimb J M 2001 Appl. Phys. Lett. 79 3281
[22] Wang D, Ye M, He Y N, Li Y and Cui W Z 2017 Proceedings of the 9th International Workshop on Multipactor, Corona and Passive Intermodulation (MULCOPIM'17) April 5-7, 2017 Noordwijk, The Netherlands, Session 8B
[23] Bjärngard B E, Chen G T Y and Maddox B J 1975 IEEE T. Nucl. Sci. 22 1558
[24] Wei Y X, Huang M G, Liu S Q, Liu J Y, Hao B L, Du C H and Liu P K 2012 Vacuum 86 2109
[1] Secondary electron emission yield from vertical graphene nanosheets by helicon plasma deposition
Xue-Lian Jin(金雪莲), Pei-Yu Ji(季佩宇), Lan-Jian Zhuge(诸葛兰剑), Xue-Mei Wu(吴雪梅), and Cheng-Gang Jin(金成刚). Chin. Phys. B, 2022, 31(2): 027901.
[2] Characteristics of secondary electron emission from few layer graphene on silicon (111) surface
Guo-Bao Feng(封国宝), Yun Li(李韵), Xiao-Jun Li(李小军), Gui-Bai Xie(谢贵柏), and Lu Liu(刘璐). Chin. Phys. B, 2022, 31(10): 107901.
[3] Analysis of secondary electron emission using the fractal method
Chun-Jiang Bai(白春江), Tian-Cun Hu(胡天存), Yun He(何鋆), Guang-Hui Miao(苗光辉), Rui Wang(王瑞), Na Zhang(张娜), and Wan-Zhao Cui(崔万照). Chin. Phys. B, 2021, 30(1): 017901.
[4] Effects of square micro-pillar array porosity on the liquid motion of near surface layer
Xiaoxi Qiao(乔小溪), Xiangjun Zhang(张向军), Ping Chen(陈平), Yu Tian(田煜), Yonggang Meng(孟永钢). Chin. Phys. B, 2020, 29(2): 024702.
[5] Effects of secondary electron emission on plasma characteristics in dual-frequency atmospheric pressure helium discharge by fluid modeling
Yi-Nan Wang(王一男), Shuai-Xing Li(李帅星), Yue Liu(刘悦), Li Wang(王莉). Chin. Phys. B, 2019, 28(2): 025202.
[6] Numerical study on discharge characteristics influenced by secondary electron emission in capacitive RF argon glow discharges by fluid modeling
Lu-Lu Zhao(赵璐璐), Yue Liu(刘悦), Tagra Samir. Chin. Phys. B, 2018, 27(2): 025201.
[7] Sheath structure in plasma with two species of positive ions and secondary electrons
Xiao-Yun Zhao(赵晓云), Nong Xiang(项农), Jing Ou(欧靖), De-Hui Li(李德徽), Bin-Bin Lin(林滨滨). Chin. Phys. B, 2016, 25(2): 025202.
[8] Forward and reverse electron transport properties across a CdS/Si multi-interface nanoheterojunction
Li Yong (李勇), Wang Ling-Li (王伶俐), Wang Xiao-Bo (王小波), Yan Ling-Ling (闫玲玲), Su Li-Xia (苏丽霞), Tian Yong-Tao (田永涛), Li Xin-Jian (李新建). Chin. Phys. B, 2014, 23(8): 087307.
[9] A double toroidal analyzer for scanning probe electron energy spectrometer
Xu Chun-Kai (徐春凯), Zhang Pan-Ke (张盼科), Li Meng (郦盟), Chen Xiang-Jun (陈向军). Chin. Phys. B, 2014, 23(7): 073402.
[10] Characteristics of wall sheath and secondary electron emission under different electron temperatures in a Hall thruster
Duan Ping (段萍), Qin Hai-Juan (覃海娟), Zhou Xin-Wei (周新维), Cao An-Ning (曹安宁), Chen Long (陈龙), Gao Hong (高宏). Chin. Phys. B, 2014, 23(7): 075203.
[11] The enhancement of light-emitting efficiency using GaN-based multiple quantum well light-emitting diodes with nanopillar arrays
Wan Tu-Tu (万图图), Ye Zhan-Qi (叶展圻), Tao Tao (陶涛), Xie Zi-Li (谢自力), Zhang Rong (张荣), Liu Bin (刘斌), Xiu Xiang-Qian (修向前), Li Yi (李毅), Han Ping (韩平), Shi Yi (施毅), Zheng You-Dou (郑有炓). Chin. Phys. B, 2013, 22(8): 088102.
[12] On characteristics of sheath damping near a dielectric wall with secondary electron emission
Yu Da-Ren(于达仁), Qing Shao-Wei(卿绍伟), Yan Guo-Jun(闫国军), and Duan Ping(段萍). Chin. Phys. B, 2011, 20(6): 065204.
[13] The charging stability of different silica glasses studied by measuring the secondary electron emission yield
Zhao Su-Ling(赵谡玲) and Bertrand Poumellec. Chin. Phys. B, 2011, 20(3): 037901.
[14] Si nanopillar arrays with nanocrystals produced by template-induced growth at room temperature
Bai An-Qi(白安琪), Zheng Jun(郑军), Tao Ye-Liao(陶冶了), Zuo Yu-Hua(左玉华), Xue Chun-Lai(薛春来), Cheng Bu-Wen(成步文), and Wang Qi-Ming(王启明) . Chin. Phys. B, 2011, 20(11): 116103.
[15] Preparation, structural and electrical properties of zinc oxide grown on silicon nanoporous pillar array
Yao Zhi-Tao(姚志涛), Sun Xin-Rui(孙新瑞), Xu Hai-Jun(许海军), and Li Xin-Jian(李新建). Chin. Phys. B, 2007, 16(10): 3108-3113.
No Suggested Reading articles found!