Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(6): 063203    DOI: 10.1088/1674-1056/ac490b
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Numerical studies of atomic three-step photoionization processes with non-monochromatic laser fields

Xiao-Yong Lu(卢肖勇), Li-De Wang(王立德), and Yun-Fei Li(李云飞)
Science and Technology on Particle Transport and Separation Laboratory, Tianjin 300180, China
Abstract  The atomic selective multi-step photoionization process is a critical step in laser isotope separation. In this work, we study three-step photoionization processes with non-monochromatic laser fields theoretically based on the semi-classical theory. Firstly, three bandwidth models, including the chaotic field model, de-correlation model, and phase diffusion model, are introduced into the density matrix equations. The numerical results are compared with each other comprehensively. The phase diffusion model is selected for further simulations in terms of the correspondence degree to physical practice. Subsequently, numerical calculations are carried out to identify the influences of systematic parameters, including laser parameters (Rabi frequency, bandwidth, relative time delay, frequency detuning) and atomic Doppler broadening, on photoionization processes. In order to determine the optimal match among different systematic parameters, the ionization yield of resonant isotope, and selectivity factor are adopted as evaluation indexes to guide the design and optimization process. The results in this work can provide a rewarding reference for laser isotope separation.
Keywords:  non-monochromatic laser field      bandwidth model      ionization yield      selectivity factor  
Received:  02 September 2021      Revised:  23 December 2021      Accepted manuscript online:  07 January 2022
PACS:  32.80.-t (Photoionization and excitation)  
  32.80.Rm (Multiphoton ionization and excitation to highly excited states)  
  42.50.Hz (Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift)  
Corresponding Authors:  Xiao-Yong Lu     E-mail:  lu-xy15@tsinghua.org.cn

Cite this article: 

Xiao-Yong Lu(卢肖勇), Li-De Wang(王立德), and Yun-Fei Li(李云飞) Numerical studies of atomic three-step photoionization processes with non-monochromatic laser fields 2022 Chin. Phys. B 31 063203

[1] Miller C M, Engleman R and Keller R A 1985 J. Opt. Soc. Am. B 2 1503
[2] Kluge H J 1987 Hyperfine Interact. 1 347
[3] Raeder S, Kneip N, Reich T, Studer D, Trautmann N and Wendt K 2019 Radiochim. Acta 107 645
[4] Fedosseev V N, Kudryavtsev Yu and Mishin V I 2012 Phys. Scr. 85 058104
[5] Marsh B A 2014 Rev. Sci. Instrum. 85 02B923
[6] Bosco H, Hamann L, Kneip N, Raiwa M, Weiss M, Wendt K and Walther C 2021 Sci. Adv. 7 eabj1175
[7] Letokhov V S 1979 Nature 277 605
[8] Greenland P T 1990 Contemp. Phys. 31 405
[9] Parvin P, Sajad B, Silakhori K, Hooshvar M and Zamanipour Z 2004 Prog. Nucl. Energy 44 331
[10] Saleem M, Hussain S, Rafiq M and Baig M A 2006 J. Phys. B: At. Mol. Opt. Phys. 39 5025
[11] Saini V K, Talwar S, Subrahmanyam V V V and Dixit S K 2019 Opt. Laser Technol. 111 754
[12] Brinkmann U, Hartig W, Telle H and Walther H 1974 Appl. Phys. 5 109
[13] Maruyama Y, Suzuki Y, Arisawa T and Shiba K 1987 Appl. Phys. B 44 163
[14] Tsvetkov G O, D'yachkov A B, Gorkunov A A, Labozin A V, Mironov S M, Firsov V A and Panchenko V Ya 2017 Quantum Electron. 47 48
[15] Niki H, Kuroyanagi T, Horiuchi Y and Tokita S 2008 J. Nucl. Sci. Technol. 45 101
[16] van Wijngaarden W A and Li J 1994 Phys. Rev. A 49 1158
[17] Yamada K, Ozaki N, Yamamoto M and Ueyanagi K 1988 J. Nucl. Sci. Technol. 25 641
[18] Karlov N V, Krynetskii B B, Mishin V A and Prokhorov A M 1978 Appl. Opt. 17 856
[19] Karlov N V, Krynetskii B B, Kushlyanskii O A, Mishin V A and Nastyukha A I 1981 J. Sov. Laser Res. 2 123
[20] Karlov N V, Krynetskii B B, Mishin V A, Prokhorov A M, Savelev A D and Smirnov V V 1977 Opt. Commun. 21 384
[21] Suryanarayana M V 2021 J. Opt. Soc. Am. B 38 353
[22] Kumar P V K, Sankari M and Suryanarayana M V 2003 J. Opt. Soc. Am. B 20 1807
[23] Park H M, Kwon D H, Cha Y H, Kim T S, Han J M, Ko K H, Jeong D Y and Kim C J 2008 J. Nucl. Sci. Technol. supplement 6 111
[24] Andreev O I, Derzhiev V I, Dyakin V M, Egorov A G, Mikhal'tsov L A, Tarasov V A, Tolkachev A I, Toporov Yu G, Chaushanskii S A and Yakovlenko S I 2006 Quantum Electron. 36 84
[25] Babichev A P, Grigoriev I S, Grigoriev A I, Dorovskii A P, D'yachkov A B, Kovalevich S K, Kochetov V A, Kuznetsov V A, Labozin V P, Matrakhov A V, Mironov S M, Nikulin S A, Pesnya A V, Timofeev N I, Firsov V A, Tsvetkov G O and Shatalova G G 2005 Quantum Electron. 35 879
[26] D'yachkov A B, Gorkunov A A, Labozin A V, Mironov S M, Panchenko V Ya, Firsov V A and Tsvetkov G O 2018 Quantum Electron. 48 75
[27] Böhm H D V, Michaelis W and Weitkamp C 1978 Opt. Commun. 26 177
[28] Zoller P 1979 Phys. Rev. A 19 1151
[29] Zoller P 1979 Phys. Rev. A 20 2420
[30] Agostini P, George A T, Wheatley S E, Lambropoulos P and Levenson M D 1978 J. Phys. B: At. Mol. Opt. Phys. 11 1733
[31] Dai B N and Lambropoulos P 1986 Phys. Rev. A 34 3954
[32] Lambropoulos P and Lyras A 1989 Phys. Rev. A 40 2199
[33] Lyras A, Zorman B and Lambropoulos P 1990 Phys. Rev. A 42 543
[34] Choe A S, Rhee Y J, Lee J M, Kuzmina M A and Mishin V A 1995 J. Phys. B: At. Mol. Opt. Phys. 28 3805
[35] Lu X Y, Zhang X Z and Zhang Z Z 2017 Acta Phys. Sin. 66 193201 (in Chinese)
[36] Bushaw B A, Nörtershäuser W and Wendt K 1999 Spectrochim. Acta, Part B 54 321
[37] Nörtershäuser W, Bushaw B A, Müller P and Wendt K 2000 Appl. Opt. 39 5590
[38] Autler S H and Townes C H 1955 Phys. Rev. 100 703
[39] Fisk P T H, Bachor H A and Sandeman R 1986 J. Phys. Rev. A 33 2418
[40] Greenland P T, Travis D N and Wort D J H 1991 J. Phys. B: At. Mol. Opt. Phys. 24 1287
[1] Quantum control of ultrafast magnetic field in H32+ molecules by tricircular polarized laser pulses
Qing-Yun Xu(徐清芸), Yong-Lin He(何永林), Zhi-Jie Yang(杨志杰), Zhi-Xian Lei(雷志仙),Shu-Juan Yan(闫淑娟), Xue-Shen Liu(刘学深), and Jing Guo(郭静). Chin. Phys. B, 2023, 32(3): 033202.
[2] Wavelength- and ellipticity-dependent photoelectron spectra from multiphoton ionization of atoms
Keyu Guo(郭珂雨), Min Li(黎敏), Jintai Liang(梁锦台), Chuanpeng Cao(曹传鹏), Yueming Zhou(周月明), and Peixiang Lu((陆培祥). Chin. Phys. B, 2023, 32(2): 023201.
[3] Strong-field response time and its implications on attosecond measurement
Chao Chen(陈超), Jiayin Che(车佳殷), Xuejiao Xie(谢雪娇), Shang Wang(王赏), Guoguo Xin(辛国国), and Yanjun Chen(陈彦军). Chin. Phys. B, 2022, 31(3): 033201.
[4] Exploration of magnetic field generation of H32+ by direc ionization and coherent resonant excitation
Zhi-Jie Yang(杨志杰), Qing-Yun Xu(徐清芸), Yong-Lin He(何永林), Xue-Shen Liu(刘学深), and Jing Guo(郭静). Chin. Phys. B, 2021, 30(12): 123203.
[5] Probing time delay of strong-field resonant above-threshold ionization
Shengliang Xu(徐胜亮), Qingbin Zhang(张庆斌), Cheng Ran(冉成), Xiang Huang(黄湘), Wei Cao(曹伟), and Peixiang Lu(陆培祥). Chin. Phys. B, 2021, 30(1): 013202.
[6] Laser-assisted XUV double ionization of helium atoms: Intensity dependence of joint angular distributions
Fengzheng Zhu(朱风筝), Genliang Li(黎根亮), Aihua Liu(刘爱华). Chin. Phys. B, 2020, 29(7): 073202.
[7] Coherent 420 nm laser beam generated by four-wave mixing in Rb vapor with a single continuous-wave laser
Hao Liu(刘浩), Jin-Peng Yuan(元晋鹏), Li-Rong Wang(汪丽蓉), Lian-Tuan Xiao(肖连团), Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2020, 29(4): 043203.
[8] Theoretical investigation of the pressure broadening D1 and D2 lines of cesium atoms colliding with ground-state helium atoms
Moussaoui Abdelaziz, Alioua Kamel, Allouche Abdul-rahman, Bouledroua Moncef. Chin. Phys. B, 2019, 28(10): 103103.
[9] Ellipticity-dependent ionization yield for noble atoms
Hristina Deliba?i?, Violeta Petrovi?. Chin. Phys. B, 2019, 28(8): 083201.
[10] Quantal studies of sodium 3p←3s photoabsorption spectra perturbed by ground lithium atoms
N Lamoudi, F Talbi, M T Bouazza, M Bouledroua, K Alioua. Chin. Phys. B, 2019, 28(6): 063202.
[11] Increase of photoluminescence blinking frequency of 3C-SiC nanocrystals with excitation power
Zhixing Gan(甘志星), Weiping Zhou(周卫平), Ming Meng(孟明). Chin. Phys. B, 2018, 27(12): 127804.
[12] Relativistic R-matrix calculations for L-shell photoionization cross sections of C Ⅱ
Lu-You Xie(颉录有), Qian-Qian Man(满倩倩), Jian-Guo Wang(王建国), Yi-Zhi Qu(屈一至), Chen-Zhong Dong(董晨钟). Chin. Phys. B, 2018, 27(8): 083201.
[13] Pressure-broadened atomic Li(2s-2p) line perturbed by ground neon atoms in the spectral wings and core
Sabri Bouchoucha, Kamel Alioua, Moncef Bouledroua. Chin. Phys. B, 2017, 26(7): 073202.
[14] Dirac R-matrix calculations of photoionization cross sections of Ni XII and atomic structure data of Ni XIII
R T Nazir, M A Bari, M Bilal, S Sardar, M H Nasim, M Salahuddin. Chin. Phys. B, 2017, 26(2): 023102.
[15] Influence of the interaction volume on the kinetic energy resolution of a velocity map imaging spectrometer
Peng Zhang(张鹏), Zheng-Peng Feng(冯正鹏), Si-Qiang Luo(罗四强), Zhe Wang(王哲). Chin. Phys. B, 2016, 25(3): 033202.
No Suggested Reading articles found!