Abstract The atomic selective multi-step photoionization process is a critical step in laser isotope separation. In this work, we study three-step photoionization processes with non-monochromatic laser fields theoretically based on the semi-classical theory. Firstly, three bandwidth models, including the chaotic field model, de-correlation model, and phase diffusion model, are introduced into the density matrix equations. The numerical results are compared with each other comprehensively. The phase diffusion model is selected for further simulations in terms of the correspondence degree to physical practice. Subsequently, numerical calculations are carried out to identify the influences of systematic parameters, including laser parameters (Rabi frequency, bandwidth, relative time delay, frequency detuning) and atomic Doppler broadening, on photoionization processes. In order to determine the optimal match among different systematic parameters, the ionization yield of resonant isotope, and selectivity factor are adopted as evaluation indexes to guide the design and optimization process. The results in this work can provide a rewarding reference for laser isotope separation.
(Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift)
Corresponding Authors:
Xiao-Yong Lu
E-mail: lu-xy15@tsinghua.org.cn
Cite this article:
Xiao-Yong Lu(卢肖勇), Li-De Wang(王立德), and Yun-Fei Li(李云飞) Numerical studies of atomic three-step photoionization processes with non-monochromatic laser fields 2022 Chin. Phys. B 31 063203
[1] Miller C M, Engleman R and Keller R A 1985 J. Opt. Soc. Am. B2 1503 [2] Kluge H J 1987 Hyperfine Interact.1 347 [3] Raeder S, Kneip N, Reich T, Studer D, Trautmann N and Wendt K 2019 Radiochim. Acta107 645 [4] Fedosseev V N, Kudryavtsev Yu and Mishin V I 2012 Phys. Scr.85 058104 [5] Marsh B A 2014 Rev. Sci. Instrum.85 02B923 [6] Bosco H, Hamann L, Kneip N, Raiwa M, Weiss M, Wendt K and Walther C 2021 Sci. Adv.7 eabj1175 [7] Letokhov V S 1979 Nature277 605 [8] Greenland P T 1990 Contemp. Phys.31 405 [9] Parvin P, Sajad B, Silakhori K, Hooshvar M and Zamanipour Z 2004 Prog. Nucl. Energy44 331 [10] Saleem M, Hussain S, Rafiq M and Baig M A 2006 J. Phys. B: At. Mol. Opt. Phys.39 5025 [11] Saini V K, Talwar S, Subrahmanyam V V V and Dixit S K 2019 Opt. Laser Technol.111 754 [12] Brinkmann U, Hartig W, Telle H and Walther H 1974 Appl. Phys.5 109 [13] Maruyama Y, Suzuki Y, Arisawa T and Shiba K 1987 Appl. Phys. B44 163 [14] Tsvetkov G O, D'yachkov A B, Gorkunov A A, Labozin A V, Mironov S M, Firsov V A and Panchenko V Ya 2017 Quantum Electron.47 48 [15] Niki H, Kuroyanagi T, Horiuchi Y and Tokita S 2008 J. Nucl. Sci. Technol.45 101 [16] van Wijngaarden W A and Li J 1994 Phys. Rev. A49 1158 [17] Yamada K, Ozaki N, Yamamoto M and Ueyanagi K 1988 J. Nucl. Sci. Technol.25 641 [18] Karlov N V, Krynetskii B B, Mishin V A and Prokhorov A M 1978 Appl. Opt.17 856 [19] Karlov N V, Krynetskii B B, Kushlyanskii O A, Mishin V A and Nastyukha A I 1981 J. Sov. Laser Res.2 123 [20] Karlov N V, Krynetskii B B, Mishin V A, Prokhorov A M, Savelev A D and Smirnov V V 1977 Opt. Commun.21 384 [21] Suryanarayana M V 2021 J. Opt. Soc. Am. B38 353 [22] Kumar P V K, Sankari M and Suryanarayana M V 2003 J. Opt. Soc. Am. B20 1807 [23] Park H M, Kwon D H, Cha Y H, Kim T S, Han J M, Ko K H, Jeong D Y and Kim C J 2008 J. Nucl. Sci. Technol.supplement 6 111 [24] Andreev O I, Derzhiev V I, Dyakin V M, Egorov A G, Mikhal'tsov L A, Tarasov V A, Tolkachev A I, Toporov Yu G, Chaushanskii S A and Yakovlenko S I 2006 Quantum Electron.36 84 [25] Babichev A P, Grigoriev I S, Grigoriev A I, Dorovskii A P, D'yachkov A B, Kovalevich S K, Kochetov V A, Kuznetsov V A, Labozin V P, Matrakhov A V, Mironov S M, Nikulin S A, Pesnya A V, Timofeev N I, Firsov V A, Tsvetkov G O and Shatalova G G 2005 Quantum Electron.35 879 [26] D'yachkov A B, Gorkunov A A, Labozin A V, Mironov S M, Panchenko V Ya, Firsov V A and Tsvetkov G O 2018 Quantum Electron.48 75 [27] Böhm H D V, Michaelis W and Weitkamp C 1978 Opt. Commun.26 177 [28] Zoller P 1979 Phys. Rev. A19 1151 [29] Zoller P 1979 Phys. Rev. A20 2420 [30] Agostini P, George A T, Wheatley S E, Lambropoulos P and Levenson M D 1978 J. Phys. B: At. Mol. Opt. Phys.11 1733 [31] Dai B N and Lambropoulos P 1986 Phys. Rev. A34 3954 [32] Lambropoulos P and Lyras A 1989 Phys. Rev. A40 2199 [33] Lyras A, Zorman B and Lambropoulos P 1990 Phys. Rev. A42 543 [34] Choe A S, Rhee Y J, Lee J M, Kuzmina M A and Mishin V A 1995 J. Phys. B: At. Mol. Opt. Phys.28 3805 [35] Lu X Y, Zhang X Z and Zhang Z Z 2017 Acta Phys. Sin.66 193201 (in Chinese) [36] Bushaw B A, Nörtershäuser W and Wendt K 1999 Spectrochim. Acta, Part B54 321 [37] Nörtershäuser W, Bushaw B A, Müller P and Wendt K 2000 Appl. Opt.39 5590 [38] Autler S H and Townes C H 1955 Phys. Rev.100 703 [39] Fisk P T H, Bachor H A and Sandeman R 1986 J. Phys. Rev. A33 2418 [40] Greenland P T, Travis D N and Wort D J H 1991 J. Phys. B: At. Mol. Opt. Phys.24 1287
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.