Transport and magnetoresistance effect in an oxygen-deficient SrTiO3/La0.67Sr0.33MnO3 heterojunction
Wang Jing (王晶)a b, Chen Chang-Le (陈长乐)a, Yang Shi-Hai (杨世海)a, Luo Bing-Cheng (罗炳成)a, Duan Meng-Meng (段萌萌)a, Jin Ke-Xin (金克新)a
a Shaanxi Key Laboratory of Condensed Matter Structures and Properties, School of Science, Northwestern Polytechnical University, Xi’an 710072, China; b College of Physics and Electronic Engineering, Weinan Normal University, Weinan 714000, China
Abstract An oxygen-deficient SrTiO3/La0.67Sr0.33MnO3 heterojunction is fabricated on an SrTiO3 (001) substrate by a pulsed laser deposition method. The electrical characteristics of the heterojunction are studied systematically in a temperature range from 80 K to 300 K. The transport mechanism follows I ∝ exp (eV/nkT) under small forward bias, while it becomes space charge limited and follows I ∝ Vm(T) with 1.49< m <1.99 under high bias. Such a heterojunction also exhibits magnetoresistance (MR) effect. The absolute value of negative MR monotonically increases with temperature decreasing and reaches 26.7% at 80 K under H=0.7 T. Various factors, such as strain and oxygen deficiency play dominant roles in the characteristics.
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61078057, 51172183, and 51202195), the Natural Science Foundation of Shaanxi Province, China (Grant No. 2012JQ8013), the Aviation Foundation of China (Grant No. 2011ZF53065), and the Foundation for Fundamental Research of Northwestern Polytechnical University (NPU), China (Grant Nos. JC201155, JC201271, and JC20120246).
Wang Jing (王晶), Chen Chang-Le (陈长乐), Yang Shi-Hai (杨世海), Luo Bing-Cheng (罗炳成), Duan Meng-Meng (段萌萌), Jin Ke-Xin (金克新) Transport and magnetoresistance effect in an oxygen-deficient SrTiO3/La0.67Sr0.33MnO3 heterojunction 2013 Chin. Phys. B 22 127302
[1]
Szot K, Speier W, Bihlmayer G and Waser R 2006 Nat. Mater. 5 312
[2]
Shanthi N and Sarma D D 1998 Phys. Rev. B 57 2153
[3]
Crandles D A, Nicholas B, Dreher C, Homes C C, McConnell A W, Clayman B P, Gong W H and Greedan J E 1999 Phys. Rev. B 59 12842
[4]
Calvani P, Capizzi M, Donato F, Lupi S, Maselli P and Peschiaroli D 1993 Phys. Rev. B 47 8917
[5]
Gopalan S, Balu V, Lee J H, Heehan J and Lee J C 2000 Appl. Phys. Lett. 77 1526
[6]
Sarma D D, Barman S R, Kajueter H and Kotliar G 1996 Europhys. Lett. 36 307
[7]
Janousch M, Meijer G I, Staub U, Delley B, Karg S F and Andreasson B P 2007 Adv. Mater. 19 2232
[8]
Sawa A, Fujii T, Kawasaki M and Tokura Y 2005 Appl. Phys. Lett. 86 112508
[9]
Zheng L, Zhou M, Zhao J J, Cheng Z H, Zhang X Q, Xing R, Zhang X F and Lu Y 2011 Chin. Phys. B 20 087501
[10]
Yang F, Jin K J, Huang Y H, He M, Lü H B and Yang G Z 2010 Chin. Phys. B 19 087301
[11]
Luo Z, Hao J H and Gao J 2007 Appl. Phys. Lett. 91 062105
[12]
Tenne D A, Gonenli I E, Soukiassian A, Schlom D G, Nakhmanson S M, Rabe K M and Xi X X 2007 Phys. Rev. B 76 024303
[13]
Tokura Y and Tomioka Y 1999 J. Mag. Mater. 200 1
[14]
Nakagawa N, Asai M, Mukunoki Y, Susaki T and Hwang H Y 2005 Appl. Phys. Lett. 86 082504
[15]
Milnes A G and Feucht D L 1972 Heterojunctions and Metal-Semiconductor Junctions (New York: Academic Press) pp. 34–38
[16]
Sun J R, Xiong C, Zhao M T, Zhang S Y, Chen Y F and Shen B G 2004 Appl. Phys. Lett. 84 1528
[17]
Sze S M and Ng Kwok K 2007 Physics of Semiconductor Devices, 3rd edn. (New York: Wiley) p. 79
[18]
Sah C, Noycc R N and Shockley W 1957 Proc. IRE 451228
[19]
Lampert M A and Mark P 1970 Current Injection in Solids (New York: Academic Press) p. 285
[20]
Ramadan W, Ogale S B, Dhar S, Zhang S X, Kundaliya D C, Satoh I and Venkatesan T 2006 Appl. Phys. Lett. 88 142903
[21]
Urushibara A, Moritomo Y, Arima T, Asamitsu A, Kido G and Tokura Y 1995 Phys. Rev. B 51 14103
[22]
Vigliante A, Gebhardt U, Ruhm A, Wochner P, Razavi F S and Habermeier H U 2001 Europhys. Lett. 54 619
[23]
Liu Z Q, Leusink D P, Wang X, Lu W M and Gopinadhan K 2011 Phys. Rev. Lett. 107 146802
[24]
Sheng Z G, Sun Y P, Dai J M, Zhu X B and Song W H 2006 Appl. Phys. Lett. 89 082503
[25]
Li J, Ong C K, Liu J M, Huang Q and Wang S J 2000 Appl. Phys. Lett. 76 1051
Effects of preparation parameters on growth and properties of β-Ga2O3 film Zi-Hao Chen(陈子豪), Yong-Sheng Wang(王永胜), Ning Zhang(张宁), Bin Zhou(周兵), Jie Gao(高洁), Yan-Xia Wu(吴艳霞), Yong Ma(马永), Hong-Jun Hei(黑鸿君), Yan-Yan Shen(申艳艳), Zhi-Yong He(贺志勇), and Sheng-Wang Yu(于盛旺). Chin. Phys. B, 2023, 32(1): 017301.
Observation of quadratic magnetoresistance in twisted double bilayer graphene Yanbang Chu(褚衍邦), Le Liu(刘乐), Yiru Ji(季怡汝), Jinpeng Tian(田金朋), Fanfan Wu(吴帆帆), Jian Tang(汤建), Yalong Yuan(袁亚龙), Yanchong Zhao(赵岩翀), Xiaozhou Zan(昝晓州), Rong Yang(杨蓉), Kenji Watanabe, Takashi Taniguchi, Dongxia Shi(时东霞), Wei Yang(杨威), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(10): 107201.
No Suggested Reading articles found!
Viewed
Full text
Abstract
Cited
Altmetric
blogs
tweeters
Facebook pages
Wikipedia page
Google+ users
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.