CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Transition from the Kondo effect to a Coulomb blockade in an electron shuttle |
Zhang Rong (张荣), Chu Wei-Dong (楚卫东), Duan Su-Qing (段素青), Yang Ning (杨宁) |
Institute of Applied Physics and Computational Mathematics, Beijing 100088, China |
|
|
Abstract We investigate the effect of the mechanical motion of a quantum dot on the transport properties of a quantum dot shuttle. Employing the equation of motion method for the nonequilibrium Green’s function, we show that the oscillation of the dot, i.e., the time-dependent coupling between the dot’s electron and the reservoirs, can destroy the Kondo effect. With the increase in the oscillation frequency of the dot, the density of states of the quantum dot shuttle changes from the Kondo-like to a Coulomb-blockade pattern. Increasing the coupling between the dot and the electrodes may partly recover the Kondo peak in the spectrum of the density of states. Understanding of the effect of mechanical motion on the transport properties of an electron shuttle is important for the future application of nanoelectromechanical devices.
|
Received: 06 May 2013
Revised: 30 May 2013
Accepted manuscript online:
|
PACS:
|
73.23.Hk
|
(Coulomb blockade; single-electron tunneling)
|
|
72.15.Qm
|
(Scattering mechanisms and Kondo effect)
|
|
73.63.Kv
|
(Quantum dots)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11204016). |
Corresponding Authors:
Yang Ning
E-mail: yang_ning@iapcm.ac.cn
|
Cite this article:
Zhang Rong (张荣), Chu Wei-Dong (楚卫东), Duan Su-Qing (段素青), Yang Ning (杨宁) Transition from the Kondo effect to a Coulomb blockade in an electron shuttle 2013 Chin. Phys. B 22 117305
|
[1] |
Kastner M A 1992 Rev. Mod. Phys. 64 849
|
[2] |
Ng T K and Lee P A 1988 Phys. Rev. Lett. 61 1768
|
[3] |
Hershfield S, Davies J H andWilkins JW1991 Phys. Rev. Lett. 67 3720
|
[4] |
Zhang G M and Yu L 2007 Physics 36 434 (in Chinese)
|
[5] |
Hettler M H, Kroha J and Hershfield S 1994 Phys. Rev. Lett. 73 1967
|
[6] |
Ralph D C and Buhrman R A 1992 Phys. Rev. Lett. 69 2118
|
[7] |
Hershfield S, Davies J H and Wilkins J W 1992 Phys. Rev. B 46 7046
|
[8] |
Scheible D V, Weiss C, Kotthaus J P and Blick R H 2004 Phys. Rev. Lett. 93 186801
|
[9] |
Erbe A, Weiss C, Zwerger W and Blick R H 2001 Phys. Rev. Lett. 87 096106
|
[10] |
Mravlje J and Ramsak A 2008 Phys. Rev. B 78 235416
|
[11] |
Shekhter R I, Gorelik L Y, Krive I V, Kiselev M N, Parafilo A V and Jonson M 2013 Nanoelectromechanical Systems 1 1
|
[12] |
Zhang J H, Mao X L, Liu Q Q, Gu F, Li M, Liu H and Ge Y X 2012 Chin. Phys. B 21 086101
|
[13] |
Kim C, Prada M and Blick R H 2012 ACS Nano 6 651
|
[14] |
Wang R Q, Wang B G and Xing D Y 2008 Phys. Rev. Lett. 100 117206
|
[15] |
Kiselev M N, Kikoin K, Shekhter R I and Vinokur V M 2006 Phys. Rev. B 74 233403
|
[16] |
Donarini A, Novotny T and Jauho A P 2005 New J. Phys. 7 237
|
[17] |
Tahir M and MacKinnon A 2011 arXiv:1105.5614v1
|
[18] |
Meir Y and Wingreen N S 1992 Phys. Rev. Lett. 68 2512
|
[19] |
Costi T A, Schmitteckert P, Kroha J and Wolfle P 1994 Phys. Rev. Lett. 73 1275
|
[20] |
Arrachea L 2007 Phys. Rev. B 75 035319
|
[21] |
Cornaglia P S, Usaj G and Balseiro C A 2007 Phys. Rev. B 76 241403
|
[22] |
Wingreen N S and Meir Y 1994 Phys. Rev. B 49 11040
|
[23] |
Aguado R and Langreth D C 2003 Phys. Rev. B 67 245307
|
[24] |
Hettler M H and Schoeller H 1995 Phys. Rev. Lett. 74 4907
|
[25] |
Wu B H and Cao J C 2010 Phys. Rev. B 81 085327
|
[26] |
Liu D E, Burdin S and Baranger H U 2012 arXiv:1210.4349
|
[27] |
Arrachea L 2005 Phys. Rev. B 72 125349
|
[28] |
Jauho A P, Wingreen N S and Meir Y 1994 Phys. Rev. B 50 5528
|
[29] |
Meir Y, Wingreen N S and Lee P A 1993 Phys. Rev. Lett. 70 2601
|
[30] |
Fazio R and Raimondi R 1998 Phys. Rev. Lett. 80 2913
|
[31] |
Zinbovskaya N A 2008 Phys. Rev. B 78 035331
|
[32] |
Meir Y, Wingreen N S and Lee P A 1991 Phys. Rev. Lett. 66 3048
|
[33] |
Liang W, Shores M P, Bockrath M, Long J R and Park H 2002 Nature 417 725
|
[34] |
Roch N, Florens S, Bouchiat V, Wernsdorfer W and Balestro F 2008 Nature 453 633
|
[35] |
Park H, Park J, Lim A K L, Anderson E H, Alivisatos A P and McEuen P L 2000 Nature 407 57
|
[36] |
Kashcheyevs V, Aharony A and Entin-Wohlman O 2006 Phys. Rev. B 73 125338
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|