Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(11): 117301    DOI: 10.1088/1674-1056/22/11/117301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Interfacial electronic structure at a metal–phthalocyanine/graphene interface:Copper–phthalocyanine versus iron–phthalocyanine

Ye Wei-Guo (叶伟国), Liu Dan (刘丹), Peng Xiao-Feng (彭啸峰), Dou Wei-Dong (窦卫东)
Physics Department, Shaoxing University, Shaoxing 312000, China
Abstract  The energy level alignment of CuPc and FePc on single-layer graphene/Ni(111) (SLG/Ni) substrate was investigated by using ultraviolet and X-ray photoelectron spectroscopy (UPS and XPS). The highest occupied molecular orbitals (HOMOs) in a thick layer of CuPc and FePc lie at 1.04 eV and 0.90 eV, respectively, below the Fermi level of the SLG/Ni substrate. Weak adsorbate–substrate interaction leads to negligible interfacial dipole at the CuPc/SLG/Ni interface, while a large interfacial dipole (0.20 eV) was observed in the case of FePc/SLG/Ni interface, due to strong adsorbate–substrate coupling. In addition, a new interfacial electronic feature was observed for the first time in the case of FePc on SLG/Ni substrate. This interfacial state can be attributed to a charge transfer from the SLG/Ni substrate to unoccupied orbitals of FePc.
Keywords:  interfacial electronic structure      metal–phthalocyanine interface      graphene      workfunction  
Received:  20 June 2013      Revised:  16 July 2013      Accepted manuscript online: 
PACS:  73.20.-r (Electron states at surfaces and interfaces)  
  73.30.+y (Surface double layers, Schottky barriers, and work functions)  
  73.22.Pr (Electronic structure of graphene)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61106131), the Natural Science Foundation of Zhejiang Province, China (Grant No. Y6110072), the Talents Project of Science and Technology Department of Qianjiang City, China (Grant No. 2012R10075), and the Postdoctoral Science Foundation of China (Grant No. 2012M521119).
Corresponding Authors:  Dou Wei-Dong     E-mail:  phyth@usx.edu.cn

Cite this article: 

Ye Wei-Guo (叶伟国), Liu Dan (刘丹), Peng Xiao-Feng (彭啸峰), Dou Wei-Dong (窦卫东) Interfacial electronic structure at a metal–phthalocyanine/graphene interface:Copper–phthalocyanine versus iron–phthalocyanine 2013 Chin. Phys. B 22 117301

[1] Ishii H, Sugiyama K, Ito E and Seki K 1999 Adv. Mater. 11 605
[2] Braga D and Horowitz G 2009 Adv. Mater. 21 1473
[3] Crispin X, Geskin V, Crispin A, Cornil J, Lazzaroni R, Salaneck W R and Brédas J L 2002 J. Am. Chem. Soc. 124 8131
[4] Koch N, Heimel G, Wu J, Zojer E, Johnson R L, Brédas J L, Müllen K and Rabe J P 2005 Chem. Phys. Lett. 413 390
[5] Koch N, Duhm S, Rabe J P, Vollmer A and Johnson R L 2005 Phys. Rev. Lett. 95 237601
[6] Petraki F and Kennou S 2009 Org. Electron. 10 1382
[7] Wang N N, Yu J S, Zang Y and Jiang Y D 2010 Chin. Phys. B 19 038602
[8] Cao G H, Qin D S, Guan M, Cao J S, Zeng Y P and Li J M 2007 Chin. Phys. Lett. 24 1380
[9] Müller K, Seitsonen A P, Brugger T, Westover J, Greber T, Jung T and Kara A 2012 J. Phys. Chem. C 116 23465
[10] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
[11] Pan Y, Shi D X and Gao H J 2007 Chin. Phys. 16 3151
[12] Ma P, Jin Z, Guo J N, Pan H L, Liu X Y, Ye T C, Wang H and Wang G Z 2012 Chin. Phys. Lett. 29 057302
[13] Wu J B, Agrawal M, Becerril H A, Bao Z N, Liu Z F, Chen Y S and Peumans P 2009 ACS Nano 4 43
[14] Kang S, Kim J B, Kim K S, Zhao Y, Chen Z, Lee G H, Hone J, Kim P and Nuckolls C 2011 Adv. Mater. 23 3531
[15] Liu Z F, Liu Q, Huang Y, Ma Y F, Yin S, Zhang X Y, Sun W and Chen Y S 2008 Adv. Mater. 20 3924
[16] Wu J B, Becerril H A, Bao Z N, Liu Z F, Chen Y S and Peumans P 2008 Appl. Phys. Lett. 92 263302
[17] Fu Y S, Ji S H, Ma X C, Wu R, Wang C C, Duan W H, Qiu X H, Sun B, Zhang P, Jia J F and Xue Q K 2007 Phys. Rev. Lett. 99 256601
[18] Schmid M, Kaftan A, Steinruck H P and Gottfried J M 2012 Surf. Sci. 606 945
[19] Uihlein J, Peisert H, Glaser M, Polek M, Adler H, Petraki F, Ovsyannikov R, Bauer M and Chassé T 2013 J. Chem. Phys. 138 081101
[20] Mao H Y, Wang R, Wang Y, Niu T C, Zhong J Q, Huang M Y, Qi D C, Loh K P, Wee A T S and Chen W 2011 Appl. Phys. Lett. 99 093301
[21] Scardamaglia M, Lisi S, Lizzit S, Baraldi A, Larciprete R, Mariani C and Betti M G 2013 J. Phys. Chem. C 117 3019
[22] Ren J, Meng S, Wang Y L, Ma X C, Xue Q K and Kaxiras E 2011 J. Chem. Phys. 134 194706
[23] Xu H, Xie L, Zhang H and Zhang J 2011 ACS Nano 5 5338
[24] Wu Q H, Hong G, Ng T W and Lee S T 2012 Appl. Phys. Lett. 100 161603
[25] Yang K, Xiao W D, Jiang Y H, Zhang H G, Liu L W, Mao J H, Zhou H T, Du S X and Gao H J 2012 J. Phys. Chem. C 116 14052
[26] Xiao K, Deng W, Keum J K, Yoon M, Vlassiouk I V, Clark K W, Li A P, Kravchenko I I, Gu G, Payzant E A, Sumpter B G, Smith S C, Browning J F and Geohegan D B 2013 J. Am. Chem. Soc. 135 3680
[27] Dou W D, Huang S P, Zhang R Q and Lee C S 2011 J. Chem. Phys. 134 094705
[28] Dou W D, Yang Q D and Lee C S 2012 J. Phys. Chem. C 116 19278
[29] Dou W D, Yang Q D and Lee C S 2013 Appl. Phys. Lett. 102 131606
[30] Sandin A A T 2012 Tunneling Spectroscopy Studies of Epitaxial Graphene on and Its Interfaces (Ph.D dissertation)
[31] Amsalem P, Giovanelli L, Themlin J M and Angot T 2009 Phys. Rev. B 79 235426
[32] Tautz F S, Eremtchenko M, Schaefer J A, Sokolowski M, Shklover V and Umbach E 2002 Phys. Rev. B 65 125405
[33] Kröger J 2006 Rep. Prog. Phys. 69 899
[34] Chabal Y J 1985 Phys. Rev. Lett. 55 845
[35] Hirschmugl C J, Williams G P, Hoffman F M and Chabal Y J 1990 Phys. Rev. Lett. 65 480
[36] Kröger J, Lehwald S and Ibach H 1997 Phys. Rev. B 55 10895
[37] Giovannetti G, Khomyakov P A, Brocks G, Karpan V M, van den Brink J and Kelly P J 2008 Phys. Rev. Lett. 101 026803
[38] Hill I G, Kahn A, Soos Z G and Pascal R A 2000 Chem. Phys. Lett. 327 181
[39] Sharma G D, Krumar R and Roy M S 2006 Sol. Energy Mater. Sol. Cells 90 32
[40] Chen W, Huang C, Gao X Y, Wang L, Zhen C G, Qi D C, Chen S, Zhang H L, Loh K P, Chen Z K and Wee A T S 2006 J. Phys. Chem. B 110 26075
[41] Zhong S, Zhong J Q, Mao H Y, Zhang J L, Lin J D and Chen W 2012 Phys. Chem. Chem. Phys. 14 14127
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[3] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[4] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[5] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[6] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[7] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[8] Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Jie Yang(杨杰). Chin. Phys. B, 2022, 31(8): 088102.
[9] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[10] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[11] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[12] Photoelectrochemical activity of ZnO:Ag/rGO photo-anodes synthesized by two-steps sol-gel method
D Ben Jemia, M Karyaoui, M A Wederni, A Bardaoui, M V Martinez-Huerta, M Amlouk, and R Chtourou. Chin. Phys. B, 2022, 31(5): 058201.
[13] Thermionic electron emission in the 1D edge-to-edge limit
Tongyao Zhang(张桐耀), Hanwen Wang(王汉文), Xiuxin Xia(夏秀鑫), Chengbing Qin(秦成兵), and Xiaoxi Li(李小茜). Chin. Phys. B, 2022, 31(5): 058504.
[14] Light-modulated electron retroreflection and Klein tunneling in a graphene-based n-p-n junction
Xingfei Zhou(周兴飞), Ziying Wu(吴子瀛), Yuchen Bai(白宇晨), Qicheng Wang(王起程), Zhentao Zhu(朱震涛), Wei Yan(闫巍), and Yafang Xu(许亚芳). Chin. Phys. B, 2022, 31(4): 047301.
[15] TiS2-graphene heterostructures enabling polysulfide anchoring and fast electrocatalyst for lithium-sulfur batteries: A first-principles calculation
Wenyang Zhao(赵文阳), Li-Chun Xu(徐利春), Yuhong Guo(郭宇宏), Zhi Yang(杨致), Ruiping Liu(刘瑞萍), and Xiuyan Li(李秀燕). Chin. Phys. B, 2022, 31(4): 047101.
No Suggested Reading articles found!