CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Interfacial electronic structure at a metal–phthalocyanine/graphene interface:Copper–phthalocyanine versus iron–phthalocyanine |
Ye Wei-Guo (叶伟国), Liu Dan (刘丹), Peng Xiao-Feng (彭啸峰), Dou Wei-Dong (窦卫东) |
Physics Department, Shaoxing University, Shaoxing 312000, China |
|
|
Abstract The energy level alignment of CuPc and FePc on single-layer graphene/Ni(111) (SLG/Ni) substrate was investigated by using ultraviolet and X-ray photoelectron spectroscopy (UPS and XPS). The highest occupied molecular orbitals (HOMOs) in a thick layer of CuPc and FePc lie at 1.04 eV and 0.90 eV, respectively, below the Fermi level of the SLG/Ni substrate. Weak adsorbate–substrate interaction leads to negligible interfacial dipole at the CuPc/SLG/Ni interface, while a large interfacial dipole (0.20 eV) was observed in the case of FePc/SLG/Ni interface, due to strong adsorbate–substrate coupling. In addition, a new interfacial electronic feature was observed for the first time in the case of FePc on SLG/Ni substrate. This interfacial state can be attributed to a charge transfer from the SLG/Ni substrate to unoccupied orbitals of FePc.
|
Received: 20 June 2013
Revised: 16 July 2013
Accepted manuscript online:
|
PACS:
|
73.20.-r
|
(Electron states at surfaces and interfaces)
|
|
73.30.+y
|
(Surface double layers, Schottky barriers, and work functions)
|
|
73.22.Pr
|
(Electronic structure of graphene)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61106131), the Natural Science Foundation of Zhejiang Province, China (Grant No. Y6110072), the Talents Project of Science and Technology Department of Qianjiang City, China (Grant No. 2012R10075), and the Postdoctoral Science Foundation of China (Grant No. 2012M521119). |
Corresponding Authors:
Dou Wei-Dong
E-mail: phyth@usx.edu.cn
|
Cite this article:
Ye Wei-Guo (叶伟国), Liu Dan (刘丹), Peng Xiao-Feng (彭啸峰), Dou Wei-Dong (窦卫东) Interfacial electronic structure at a metal–phthalocyanine/graphene interface:Copper–phthalocyanine versus iron–phthalocyanine 2013 Chin. Phys. B 22 117301
|
[1] |
Ishii H, Sugiyama K, Ito E and Seki K 1999 Adv. Mater. 11 605
|
[2] |
Braga D and Horowitz G 2009 Adv. Mater. 21 1473
|
[3] |
Crispin X, Geskin V, Crispin A, Cornil J, Lazzaroni R, Salaneck W R and Brédas J L 2002 J. Am. Chem. Soc. 124 8131
|
[4] |
Koch N, Heimel G, Wu J, Zojer E, Johnson R L, Brédas J L, Müllen K and Rabe J P 2005 Chem. Phys. Lett. 413 390
|
[5] |
Koch N, Duhm S, Rabe J P, Vollmer A and Johnson R L 2005 Phys. Rev. Lett. 95 237601
|
[6] |
Petraki F and Kennou S 2009 Org. Electron. 10 1382
|
[7] |
Wang N N, Yu J S, Zang Y and Jiang Y D 2010 Chin. Phys. B 19 038602
|
[8] |
Cao G H, Qin D S, Guan M, Cao J S, Zeng Y P and Li J M 2007 Chin. Phys. Lett. 24 1380
|
[9] |
Müller K, Seitsonen A P, Brugger T, Westover J, Greber T, Jung T and Kara A 2012 J. Phys. Chem. C 116 23465
|
[10] |
Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
|
[11] |
Pan Y, Shi D X and Gao H J 2007 Chin. Phys. 16 3151
|
[12] |
Ma P, Jin Z, Guo J N, Pan H L, Liu X Y, Ye T C, Wang H and Wang G Z 2012 Chin. Phys. Lett. 29 057302
|
[13] |
Wu J B, Agrawal M, Becerril H A, Bao Z N, Liu Z F, Chen Y S and Peumans P 2009 ACS Nano 4 43
|
[14] |
Kang S, Kim J B, Kim K S, Zhao Y, Chen Z, Lee G H, Hone J, Kim P and Nuckolls C 2011 Adv. Mater. 23 3531
|
[15] |
Liu Z F, Liu Q, Huang Y, Ma Y F, Yin S, Zhang X Y, Sun W and Chen Y S 2008 Adv. Mater. 20 3924
|
[16] |
Wu J B, Becerril H A, Bao Z N, Liu Z F, Chen Y S and Peumans P 2008 Appl. Phys. Lett. 92 263302
|
[17] |
Fu Y S, Ji S H, Ma X C, Wu R, Wang C C, Duan W H, Qiu X H, Sun B, Zhang P, Jia J F and Xue Q K 2007 Phys. Rev. Lett. 99 256601
|
[18] |
Schmid M, Kaftan A, Steinruck H P and Gottfried J M 2012 Surf. Sci. 606 945
|
[19] |
Uihlein J, Peisert H, Glaser M, Polek M, Adler H, Petraki F, Ovsyannikov R, Bauer M and Chassé T 2013 J. Chem. Phys. 138 081101
|
[20] |
Mao H Y, Wang R, Wang Y, Niu T C, Zhong J Q, Huang M Y, Qi D C, Loh K P, Wee A T S and Chen W 2011 Appl. Phys. Lett. 99 093301
|
[21] |
Scardamaglia M, Lisi S, Lizzit S, Baraldi A, Larciprete R, Mariani C and Betti M G 2013 J. Phys. Chem. C 117 3019
|
[22] |
Ren J, Meng S, Wang Y L, Ma X C, Xue Q K and Kaxiras E 2011 J. Chem. Phys. 134 194706
|
[23] |
Xu H, Xie L, Zhang H and Zhang J 2011 ACS Nano 5 5338
|
[24] |
Wu Q H, Hong G, Ng T W and Lee S T 2012 Appl. Phys. Lett. 100 161603
|
[25] |
Yang K, Xiao W D, Jiang Y H, Zhang H G, Liu L W, Mao J H, Zhou H T, Du S X and Gao H J 2012 J. Phys. Chem. C 116 14052
|
[26] |
Xiao K, Deng W, Keum J K, Yoon M, Vlassiouk I V, Clark K W, Li A P, Kravchenko I I, Gu G, Payzant E A, Sumpter B G, Smith S C, Browning J F and Geohegan D B 2013 J. Am. Chem. Soc. 135 3680
|
[27] |
Dou W D, Huang S P, Zhang R Q and Lee C S 2011 J. Chem. Phys. 134 094705
|
[28] |
Dou W D, Yang Q D and Lee C S 2012 J. Phys. Chem. C 116 19278
|
[29] |
Dou W D, Yang Q D and Lee C S 2013 Appl. Phys. Lett. 102 131606
|
[30] |
Sandin A A T 2012 Tunneling Spectroscopy Studies of Epitaxial Graphene on and Its Interfaces (Ph.D dissertation)
|
[31] |
Amsalem P, Giovanelli L, Themlin J M and Angot T 2009 Phys. Rev. B 79 235426
|
[32] |
Tautz F S, Eremtchenko M, Schaefer J A, Sokolowski M, Shklover V and Umbach E 2002 Phys. Rev. B 65 125405
|
[33] |
Kröger J 2006 Rep. Prog. Phys. 69 899
|
[34] |
Chabal Y J 1985 Phys. Rev. Lett. 55 845
|
[35] |
Hirschmugl C J, Williams G P, Hoffman F M and Chabal Y J 1990 Phys. Rev. Lett. 65 480
|
[36] |
Kröger J, Lehwald S and Ibach H 1997 Phys. Rev. B 55 10895
|
[37] |
Giovannetti G, Khomyakov P A, Brocks G, Karpan V M, van den Brink J and Kelly P J 2008 Phys. Rev. Lett. 101 026803
|
[38] |
Hill I G, Kahn A, Soos Z G and Pascal R A 2000 Chem. Phys. Lett. 327 181
|
[39] |
Sharma G D, Krumar R and Roy M S 2006 Sol. Energy Mater. Sol. Cells 90 32
|
[40] |
Chen W, Huang C, Gao X Y, Wang L, Zhen C G, Qi D C, Chen S, Zhang H L, Loh K P, Chen Z K and Wee A T S 2006 J. Phys. Chem. B 110 26075
|
[41] |
Zhong S, Zhong J Q, Mao H Y, Zhang J L, Lin J D and Chen W 2012 Phys. Chem. Chem. Phys. 14 14127
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|