CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Effects of the trimodal random field on the magnetic properties of a spin-1 Ising nanotube |
H. Magoussi, A. Zaim, M. Kerouad |
Laboratoire Physique des Matériaux et Modélisation des Systémes (LP2MS), Unité Associée au CNRST-URAC: 08, University Moulay Ismail, Faculty of Sciences, B. P. 11201, Zitoune, Meknes, Morocco |
|
|
Abstract In this work, the hysteresis behavior of a nanotube, consisting of a ferromagnetic core of spin-1 atoms surrounded by a ferromagnetic shell of spin-1 atoms with ferro-or anti-ferromagnetic interfacial coupling is studied in the presence of a random magnetic field. Based on a probability distribution method, the effective-field theory has been used to investigate the effects of the random magnetic field, the interfacial coupling constant, and the temperature on the hysteresis loops of the nanotube. Some characteristic behaviors have been found, such as the existence of double or triple hysteresis loops for appropriate values of the system parameters. The remanent magnetization and the coercive field, as functions of the temperature, are examined.
|
Received: 28 February 2013
Revised: 23 May 2013
Accepted manuscript online:
|
PACS:
|
64.60.De
|
(Statistical mechanics of model systems (Ising model, Potts model, field-theory models, Monte Carlo techniques, etc.))
|
|
61.46.Fg
|
(Nanotubes)
|
|
68.35.Rh
|
(Phase transitions and critical phenomena)
|
|
Fund: Project supported by URAC: 08, the project RS: 02 (CNRST), and the Swedish Research Links programme dnr-348-2011-7264. |
Corresponding Authors:
A. Zaim, M. Kerouad
E-mail: ah_zaim@yahoo.fr;kerouad@fs-umi.ac.ma
|
Cite this article:
H. Magoussi, A. Zaim, M. Kerouad Effects of the trimodal random field on the magnetic properties of a spin-1 Ising nanotube 2013 Chin. Phys. B 22 116401
|
[1] |
Kodama R H, Berkowitz A E, McNiff E J and Foner J S 1996 Phys. Rev. Lett. 77 394
|
[2] |
Hayashi T, Hirono S, Tomita M and Umemura S 1996 Nature 381 772
|
[3] |
Kim J, Park S, Lee J E, Jin S M, Lee J H, Lee I S, Yang I, Kim J S, Kim S K, Cho M H and Hyeon T 2006 Angew. Chem. Int. Ed. 45 7754
|
[4] |
Nie S and Emory S R 1997 Science 275 1102
|
[5] |
Rosensweig R E 1997 Ferrohydrodynamics (New York: Dover)
|
[6] |
Elliott D W and Zhang W X 2001 Environ. Sci. Technol. 35 4922
|
[7] |
Lu A H, Schmidt W, Matoussevitch N, Bönnemann H, Spliethoff B, Tesche B, Bill E, Kiefer W and Schüth F 2004 Nanoengineering of a Magnetically Separable Hydrogenation Catalyst (Angewandte Chemie International Edition in English) 43 4303
|
[8] |
Wong A P Y and Chan M H W 1990 Phys. Rev. Lett. 65 2567
|
[9] |
Michael F, Gonzalez C, Mujica V, Marquez M and Ratner M A 2007 Phys. Rev. B 76 224409
|
[10] |
Kaneyoshi T 2012 Phys. Lett. A 376 2352
|
[11] |
Canko O, Erdinça A, Taşkin F and Atiş M 2011 Phys. Lett. A 375 3547
|
[12] |
Jiang W, Guan H Y, Wang Z and Guo A B 2012 Physica B 407 378
|
[13] |
Iglesias O and Labarta A 2001 Phys. Rev. B 63 184416
|
[14] |
Iglesias O, Batlle X and Labarta A 2005 Phys. Rev. B 72 212401
|
[15] |
Vasilakaki M and Trohidou K N 2009 Phys. Rev. B 79 144402
|
[16] |
Zaim A and Kerouad M 2010 Physica A 389 3435
|
[17] |
Yüksel Y, Aydiner E and Polat H 2011 J. Magn. Magn. Mater. 323 3168
|
[18] |
Wesselinowa J M 2010 J. Magn. Magn. Mater. 322 234
|
[19] |
Wesselinowa J M and Apostolova I 2008 J. Appl. Phys. 104 084108
|
[20] |
Rego L G C and Figueiredo W 2001 Phys. Rev. B 64 144424
|
[21] |
Du H F and Du A 2006 J. Appl. Phys. 99 104306
|
[22] |
Iglesias O and Labarta A 2006 Physica B 372 24
|
[23] |
Keskin M, Ş arli N and Deviren B 2011 Solid State Commun. 151 1025
|
[24] |
Fonseca F C, Goya G F, Jardim R F, Muccillo R, Carreño N L V, Longo E and Leite E R 2002 Phys. Rev. B 66 104406
|
[25] |
Gilles C, Bonville P, Rakoto H, Broto J M, Wong K K W and Mann S 2002 J. Magn. Magn. Mater. 241 430
|
[26] |
Crespo P, Litrán R, Rojas T C, Multigner M, Fuente J M, Sánchez- López J C, GarcíaMA, Hernando A, Penadés S and Fernández A 2002 Phys. Rev. Lett. 93 087204
|
[27] |
Zaim A, Kerouad M and El Amraoui Y 2009 J. Magn. Magn. Mater. 321 1077
|
[28] |
Kaneyoshi T 2011 Phys. Stat. Sol(b) 248 250
|
[29] |
Kaneyoshi T 2011 J. Magn. Magn. Mater. 323 1145
|
[30] |
Usov N A and Gudoshnikov S A 2005 J. Magn. Magn. Mater. 290 727
|
[31] |
Du H F and Du A 2007 Phys. Stat. Sol(b) 244 1401
|
[32] |
Huang Z, Chen Z, Li S, Feng Q, Zhang F and Du Y 2006 Eur. Phys. J. B 51 65
|
[33] |
Deviren B and Keskin M 2012 Phys. Lett. A 376 1011
|
[34] |
Deviren B, Kantar E and Keskin M 2012 J. Magn. Magn. Mater. 324 2163
|
[35] |
Liu L M, Jiang W, Wang Z, Guan H Y and Guo A B 2012 J. Magn. Magn. Mater. 324 4034
|
[36] |
Jiang W, Guan H Y, Wang Z and Guo A B 2012 Physica B 407 378
|
[37] |
Zaim A, Kerouad M and Boughrara M 2013 Solid State Commun. 158 76
|
[38] |
Jiang W, Liu L M, Li X X, Deng Q, Guan H Y, Zhang F and Guo A B 2012 Physica B 407 3933
|
[39] |
Guo A B and Jiang W 2012 Commun. Theor. Phys. 58 772
|
[40] |
Huang K 1963 Statistical Mechanics (New York: Wiley Press)
|
[41] |
Zaim A, Kerouad M and Boughrara M 2013 J. Magn. Magn. Mater. 331 37
|
[42] |
Sorop T G, Nielsch K, Göring P, Kröll M, Blau W, Wehrspohn R B, Gösele U and de Jongh L J 2004 J. Magn. Magn. Mater. 272 1656
|
[43] |
Cao Z, Ding A, Zhang Y, Qiu P and Zheng W 2004 Solid State Commun. 131 57
|
[44] |
Chern G, Horng L, Shieh W K and Wu T C 2001 Phys. Rev. B 63 094421
|
[45] |
Zaim A, Kerouad M, Boughrara M, Ainane A and de Miguel J J 2012 J. Supercond. Nov. Magn. 25 2407
|
[46] |
Bukharov A A, Ovchinnikov A S, Baranov N V and Inoue K 2010 J Phys.: Condens. Matter 22 436003
|
[47] |
Jiang W, Lo V C, Bai B D and Yang J 2010 Physica A 389 2227
|
[48] |
Lupu N, Lostun L and Chiriac H 2010 J. Appl. Phys. 107 09E315
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|