Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(11): 116401    DOI: 10.1088/1674-1056/22/11/116401
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Effects of the trimodal random field on the magnetic properties of a spin-1 Ising nanotube

H. Magoussi, A. Zaim, M. Kerouad
Laboratoire Physique des Matériaux et Modélisation des Systémes (LP2MS), Unité Associée au CNRST-URAC: 08, University Moulay Ismail, Faculty of Sciences, B. P. 11201, Zitoune, Meknes, Morocco
Abstract  In this work, the hysteresis behavior of a nanotube, consisting of a ferromagnetic core of spin-1 atoms surrounded by a ferromagnetic shell of spin-1 atoms with ferro-or anti-ferromagnetic interfacial coupling is studied in the presence of a random magnetic field. Based on a probability distribution method, the effective-field theory has been used to investigate the effects of the random magnetic field, the interfacial coupling constant, and the temperature on the hysteresis loops of the nanotube. Some characteristic behaviors have been found, such as the existence of double or triple hysteresis loops for appropriate values of the system parameters. The remanent magnetization and the coercive field, as functions of the temperature, are examined.
Keywords:  effective-field theory      nanotube      critical phenomena  
Received:  28 February 2013      Revised:  23 May 2013      Accepted manuscript online: 
PACS:  64.60.De (Statistical mechanics of model systems (Ising model, Potts model, field-theory models, Monte Carlo techniques, etc.))  
  61.46.Fg (Nanotubes)  
  68.35.Rh (Phase transitions and critical phenomena)  
Fund: Project supported by URAC: 08, the project RS: 02 (CNRST), and the Swedish Research Links programme dnr-348-2011-7264.
Corresponding Authors:  A. Zaim, M. Kerouad     E-mail:  ah_zaim@yahoo.fr;kerouad@fs-umi.ac.ma

Cite this article: 

H. Magoussi, A. Zaim, M. Kerouad Effects of the trimodal random field on the magnetic properties of a spin-1 Ising nanotube 2013 Chin. Phys. B 22 116401

[1] Kodama R H, Berkowitz A E, McNiff E J and Foner J S 1996 Phys. Rev. Lett. 77 394
[2] Hayashi T, Hirono S, Tomita M and Umemura S 1996 Nature 381 772
[3] Kim J, Park S, Lee J E, Jin S M, Lee J H, Lee I S, Yang I, Kim J S, Kim S K, Cho M H and Hyeon T 2006 Angew. Chem. Int. Ed. 45 7754
[4] Nie S and Emory S R 1997 Science 275 1102
[5] Rosensweig R E 1997 Ferrohydrodynamics (New York: Dover)
[6] Elliott D W and Zhang W X 2001 Environ. Sci. Technol. 35 4922
[7] Lu A H, Schmidt W, Matoussevitch N, Bönnemann H, Spliethoff B, Tesche B, Bill E, Kiefer W and Schüth F 2004 Nanoengineering of a Magnetically Separable Hydrogenation Catalyst (Angewandte Chemie International Edition in English) 43 4303
[8] Wong A P Y and Chan M H W 1990 Phys. Rev. Lett. 65 2567
[9] Michael F, Gonzalez C, Mujica V, Marquez M and Ratner M A 2007 Phys. Rev. B 76 224409
[10] Kaneyoshi T 2012 Phys. Lett. A 376 2352
[11] Canko O, Erdinça A, Taşkin F and Atiş M 2011 Phys. Lett. A 375 3547
[12] Jiang W, Guan H Y, Wang Z and Guo A B 2012 Physica B 407 378
[13] Iglesias O and Labarta A 2001 Phys. Rev. B 63 184416
[14] Iglesias O, Batlle X and Labarta A 2005 Phys. Rev. B 72 212401
[15] Vasilakaki M and Trohidou K N 2009 Phys. Rev. B 79 144402
[16] Zaim A and Kerouad M 2010 Physica A 389 3435
[17] Yüksel Y, Aydiner E and Polat H 2011 J. Magn. Magn. Mater. 323 3168
[18] Wesselinowa J M 2010 J. Magn. Magn. Mater. 322 234
[19] Wesselinowa J M and Apostolova I 2008 J. Appl. Phys. 104 084108
[20] Rego L G C and Figueiredo W 2001 Phys. Rev. B 64 144424
[21] Du H F and Du A 2006 J. Appl. Phys. 99 104306
[22] Iglesias O and Labarta A 2006 Physica B 372 24
[23] Keskin M, Ş arli N and Deviren B 2011 Solid State Commun. 151 1025
[24] Fonseca F C, Goya G F, Jardim R F, Muccillo R, Carreño N L V, Longo E and Leite E R 2002 Phys. Rev. B 66 104406
[25] Gilles C, Bonville P, Rakoto H, Broto J M, Wong K K W and Mann S 2002 J. Magn. Magn. Mater. 241 430
[26] Crespo P, Litrán R, Rojas T C, Multigner M, Fuente J M, Sánchez- López J C, GarcíaMA, Hernando A, Penadés S and Fernández A 2002 Phys. Rev. Lett. 93 087204
[27] Zaim A, Kerouad M and El Amraoui Y 2009 J. Magn. Magn. Mater. 321 1077
[28] Kaneyoshi T 2011 Phys. Stat. Sol(b) 248 250
[29] Kaneyoshi T 2011 J. Magn. Magn. Mater. 323 1145
[30] Usov N A and Gudoshnikov S A 2005 J. Magn. Magn. Mater. 290 727
[31] Du H F and Du A 2007 Phys. Stat. Sol(b) 244 1401
[32] Huang Z, Chen Z, Li S, Feng Q, Zhang F and Du Y 2006 Eur. Phys. J. B 51 65
[33] Deviren B and Keskin M 2012 Phys. Lett. A 376 1011
[34] Deviren B, Kantar E and Keskin M 2012 J. Magn. Magn. Mater. 324 2163
[35] Liu L M, Jiang W, Wang Z, Guan H Y and Guo A B 2012 J. Magn. Magn. Mater. 324 4034
[36] Jiang W, Guan H Y, Wang Z and Guo A B 2012 Physica B 407 378
[37] Zaim A, Kerouad M and Boughrara M 2013 Solid State Commun. 158 76
[38] Jiang W, Liu L M, Li X X, Deng Q, Guan H Y, Zhang F and Guo A B 2012 Physica B 407 3933
[39] Guo A B and Jiang W 2012 Commun. Theor. Phys. 58 772
[40] Huang K 1963 Statistical Mechanics (New York: Wiley Press)
[41] Zaim A, Kerouad M and Boughrara M 2013 J. Magn. Magn. Mater. 331 37
[42] Sorop T G, Nielsch K, Göring P, Kröll M, Blau W, Wehrspohn R B, Gösele U and de Jongh L J 2004 J. Magn. Magn. Mater. 272 1656
[43] Cao Z, Ding A, Zhang Y, Qiu P and Zheng W 2004 Solid State Commun. 131 57
[44] Chern G, Horng L, Shieh W K and Wu T C 2001 Phys. Rev. B 63 094421
[45] Zaim A, Kerouad M, Boughrara M, Ainane A and de Miguel J J 2012 J. Supercond. Nov. Magn. 25 2407
[46] Bukharov A A, Ovchinnikov A S, Baranov N V and Inoue K 2010 J Phys.: Condens. Matter 22 436003
[47] Jiang W, Lo V C, Bai B D and Yang J 2010 Physica A 389 2227
[48] Lupu N, Lostun L and Chiriac H 2010 J. Appl. Phys. 107 09E315
[1] Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S.Ali Eftekhari, and Saeed Ziaei-Rad. Chin. Phys. B, 2023, 32(4): 046201.
[2] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[3] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[4] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[5] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[6] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
[7] Lithium ion batteries cathode material: V2O5
Baohe Yuan(袁保合), Xiang Yuan(袁祥), Binger Zhang(张冰儿), Zheng An(安政), Shijun Luo(罗世钧), and Lulu Chen(陈露露). Chin. Phys. B, 2022, 31(3): 038203.
[8] A review of arc-discharge method towards large-scale preparation of long linear carbon chains
Yi-Fan Zhang(张一帆). Chin. Phys. B, 2022, 31(12): 125201.
[9] Large-scale synthesis of polyynes with commercial laser marking technology
Liang Fang(房良), Yanping Xie(解燕平), Shujie Sun(孙书杰), and Wei Zi(訾威). Chin. Phys. B, 2022, 31(12): 126803.
[10] Low-voltage soft robots based on carbon nanotube/polymer electrothermal composites
Qi Wang(王琪), Ying-Qiong Yong(雍颖琼), and Zhi-Ming Bai(白智明). Chin. Phys. B, 2022, 31(12): 128801.
[11] Raman spectroscopy of isolated carbyne chains confined in carbon nanotubes: Progress and prospects
Johannes M. A. Lechner, Pablo Hernández López, and Sebastian Heeg. Chin. Phys. B, 2022, 31(12): 127801.
[12] Highly flexible and excellent performance continuous carbon nanotube fibrous thermoelectric modules for diversified applications
Xiao-Gang Xia(夏晓刚), Qiang Zhang(张强), Wen-Bin Zhou(周文斌), Zhuo-Jian Xiao(肖卓建), Wei Xi(席薇), Yan-Chun Wang(王艳春), and Wei-Ya Zhou(周维亚). Chin. Phys. B, 2021, 30(7): 078801.
[13] Effects of substitution of group-V atoms for carbon or silicon atoms on optical properties of silicon carbide nanotubes
Ying-Ying Yang(杨莹莹), Pei Gong(龚裴), Wan-Duo Ma(马婉铎), Rui Hao(郝锐), and Xiao-Yong Fang(房晓勇). Chin. Phys. B, 2021, 30(6): 067803.
[14] Instability of single-walled carbon nanotubes conveying Jeffrey fluid
Bei-Nan Jia(贾北楠) and Yong-Jun Jian(菅永军). Chin. Phys. B, 2021, 30(4): 044601.
[15] Dynamic phase transition of ferroelectric nanotube described by a spin-1/2 transverse Ising model
Chundong Wang(王春栋), Ying Wu(吴瑛), Yulin Cao(曹喻霖), and Xinying Xue(薛新英). Chin. Phys. B, 2021, 30(2): 020504.
No Suggested Reading articles found!