Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(10): 107103    DOI: 10.1088/1674-1056/22/10/107103
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Theoretical optoelectronic analysis of intermediate-band photovoltaic material based on ZnY1-xOx (Y=S, Se, Te) semiconductors by first-principles calculations

Wu Kong-Ping (吴孔平)a b, Gu Shu-Lin (顾书林)b, Ye Jian-Dong (叶建东)b, Tang Kun (汤琨)c, Zhu Shun-Ming (朱顺明)b, Zhou Meng-Ran (周孟然)a, Huang You-Rui (黄友锐)a, Zhang Rong (张荣)b, Zheng You-Dou (郑有炓)b
a School of Electrical and Information Engineering, Anhui University of Science and Technology, Huainan 232001, China;
b Nanjing National Laboratory of Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China;
c Data Storage Institute, A*STAR, Singapore 117608, Singapore
Abstract  The structural, energetic, and electronic properties of lattice highly mismatched ZnY1-xOx (Y=S, Se, Te) ternary alloys with dilute O concentrations are calculated from first principles within the density functional theory. We demonstrate the formation of an isolated intermediate electronic band structure through diluted O-substitute in zinc-blende ZnY (Y=S, Se, Te) at octahedral sites in a semiconductor by the calculations of density of states (DOS), leading to a significant absorption below the band gap of the parent semiconductor and an enhancement of the optical absorption in the whole energy range of the solar spectrum. It is found that the intermediate band states should be described as a result of the coupling between impurity O 2p states with the conduction band states. Moreover, the intermediate bands (IBs) in ZnTeO show high stabilization with the change of O concentration resulting from the largest electronegativity difference between O and Te compared with in the other ZnSO and ZnSeO.
Keywords:  intermediate band (IB)      electronic band structure      optical properties      electronegativity  
Received:  25 February 2013      Revised:  31 March 2013      Accepted manuscript online: 
PACS:  71.20.-b (Electron density of states and band structure of crystalline solids)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
  74.25.Gz (Optical properties)  
Fund: Project supported by the State Key Program for Basic Research of China (Grant No. 2011CB302003), the Project of High Technology Research and Development Program of China (Grant No. 2007AA03Z404), the National Natural Science Foundation of China (Grant Nos. 60990312, 61274058, 61025020, and 61073101), and the Natural Science Foundation of Anhui Province, China (Grant No. 1208085QF116).
Corresponding Authors:  Wu Kong-Ping, Gu Shu-Lin     E-mail:  kpwu@aust.edu.cn;slgu@nju.edu.cn

Cite this article: 

Wu Kong-Ping (吴孔平), Gu Shu-Lin (顾书林), Ye Jian-Dong (叶建东), Tang Kun (汤琨), Zhu Shun-Ming (朱顺明), Zhou Meng-Ran (周孟然), Huang You-Rui (黄友锐), Zhang Rong (张荣), Zheng You-Dou (郑有炓) Theoretical optoelectronic analysis of intermediate-band photovoltaic material based on ZnY1-xOx (Y=S, Se, Te) semiconductors by first-principles calculations 2013 Chin. Phys. B 22 107103

[1] Luque A and Martí A 1997 Phys. Rev. Lett. 78 5014
[2] Yu K M, Walukiewicz W, Beeman J W, Scarpulla M A, Dubon O, Pillai M R and Aziz M 2002 Appl. Phys. Lett. 80 3958
[3] Yu K M, Walukiewicz W, Wu J, Beeman J W, Ager J W, Haller E E, Miotkowski I, Ramdas A K and Becla P 2002 Appl. Phys. Lett. 80 1571
[4] Tanaka T, Miyabara M, Nagao Y, Saito K, Guo Q, Nishio M, Yu K M and Walukiewicz W 2013 Appl. Phys. Lett. 102 052111
[5] Walukiewicz W, Shan W, Yu K M, Ager J W, Haller E E, Miotkowski I, Seong M J, Alawadhi H and Ramdas A K 2000 Phys. Rev. Lett. 85 1552
[6] López N, Reichertz L A, Yu K M, Campman K and Walukiewicz W 2011 Phys. Rev. Lett. 106 028701
[7] Gordy W 1946 Phys. Rev. 69 604
[8] Wang W M, Lin A S and Phillips J D 2010 Appl. Phys. Lett. 95 011103
[9] Dong A, Wang F, Daulton T L and Buhro W E 2007 Nano Lett. 7 1308
[10] Lee B and Wang L W 2010 Appl. Phys. Lett. 96 071903
[11] Zhao L, Lu P F, Yu Z Y, Guo X T, Shen Y, Ye H, Yuan G F and Zhang L 2010 J. Appl. Phys. 108 113924
[12] Zhu F, Dong S and Cheng G 2011 Chin. Phys. B 20 077103
[13] Lü B, Zhou X, Linghu R F, Wang X L and Yang X D 2011 Chin. Phys. B 20 036104
[14] Nabetani Y, Mukawa T, Okuno T, Ito Y, Kato T and Matsumoto T 2003 Mater. Sci. Semicond. Process. 6 343
[15] Wang W, Lin A S and Phillips J D 2009 Appl. Phys. Lett. 95 011103
[16] Yu Q H, Jin L and Zhou C G 2011 Sol. Energy Mater. & Sol. C 95 2322
[17] Nabetani Y, Okuno T, Aoki K, Kato T, Matsumoto T and T Hirai 2006 Phys. Stat. Sol. (c) 3 1078
[18] Nabetani1 Y, Ito Y, Kamisawa K, Kato T, Matsumoto T and T Hirai 2006 Phys. Stat. Sol. (c) 3 1082
[19] Umebayashi T, Yamaki T, Itoh H and Asai K 2002 J. Phys. Chem. Solids 63 1909
[20] Saha S, Sinha T P and Mookerjee A 2000 Phys. Rev. B 62 8828
[1] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[2] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[3] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[4] Determination of the surface states from the ultrafast electronic states in a thermoelectric material
Tongyao Wu(吴桐尧), Hongyuan Wang(王洪远), Yuanyuan Yang(杨媛媛), Shaofeng Duan(段绍峰), Chaozhi Huang(黄超之), Tianwei Tang(唐天威), Yanfeng Guo(郭艳峰), Weidong Luo(罗卫东), and Wentao Zhang(张文涛). Chin. Phys. B, 2022, 31(2): 027902.
[5] Tailoring the optical and magnetic properties of La-BaM hexaferrites by Ni substitution
Hafiz T. Ali, M. Ramzan, M Imran Arshad, Nicola A. Morley, M. Hassan Abbas, Mohammad Yusuf, Atta Ur Rehman, Khalid Mahmood, Adnan Ali, Nasir Amin, and M. Ajaz-un-Nabi. Chin. Phys. B, 2022, 31(2): 027502.
[6] Photoreflectance system based on vacuum ultraviolet laser at 177.3 nm
Wei-Xia Luo(罗伟霞), Xue-Lu Liu(刘雪璐), Xiang-Dong Luo(罗向东), Feng Yang(杨峰), Shen-Jin Zhang(张申金), Qin-Jun Peng(彭钦军), Zu-Yan Xu(许祖彦), and Ping-Heng Tan(谭平恒). Chin. Phys. B, 2022, 31(11): 110701.
[7] First-principles study of structural and opto-electronic characteristics of ultra-thin amorphous carbon films
Xiao-Yan Liu(刘晓艳), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(1): 016102.
[8] Stability of liquid crystal systems doped with γ-Fe2O3 nanoparticles
Xu Zhang(张旭), Ningning Liu(刘宁宁), Zongyuan Tang(唐宗元), Yingning Miao(缪应宁), Xiangshen Meng(孟祥申), Zhenghong He(何正红), Jian Li(李建), Minglei Cai(蔡明雷), Tongzhou Zhao(赵桐州), Changyong Yang(杨长勇), Hongyu Xing(邢红玉), and Wenjiang Ye(叶文江). Chin. Phys. B, 2021, 30(9): 096101.
[9] Analysis of properties of krypton ion-implanted Zn-polar ZnO thin films
Qing-Fen Jiang(姜清芬), Jie Lian(连洁), Min-Ju Ying(英敏菊), Ming-Yang Wei(魏铭洋), Chen-Lin Wang(王宸琳), and Yu Zhang(张裕). Chin. Phys. B, 2021, 30(9): 097801.
[10] Strain-tunable electronic and optical properties of h-BN/BC3 heterostructure with enhanced electron mobility
Zhao-Yong Jiao(焦照勇), Yi-Ran Wang(王怡然), Yong-Liang Guo(郭永亮), and Shu-Hong Ma(马淑红). Chin. Phys. B, 2021, 30(7): 076801.
[11] Gas sensor using gold doped copper oxide nanostructured thin films as modified cladding fiber
Hussein T. Salloom, Rushdi I. Jasim, Nadir Fadhil Habubi, Sami Salman Chiad, M Jadan, and Jihad S. Addasi. Chin. Phys. B, 2021, 30(6): 068505.
[12] Effects of substitution of group-V atoms for carbon or silicon atoms on optical properties of silicon carbide nanotubes
Ying-Ying Yang(杨莹莹), Pei Gong(龚裴), Wan-Duo Ma(马婉铎), Rui Hao(郝锐), and Xiao-Yong Fang(房晓勇). Chin. Phys. B, 2021, 30(6): 067803.
[13] Low-dimensional phases engineering for improving the emission efficiency and stability of quasi-2D perovskite films
Yue Wang(王月), Zhuang-Zhuang Ma(马壮壮), Ying Li(李营), Fei Zhang(张飞), Xu Chen(陈旭), and Zhi-Feng Shi (史志锋). Chin. Phys. B, 2021, 30(6): 067802.
[14] Quasi-delta negative ions density of Ar/O2 inductively coupled plasma at very low electronegativity
Shu-Xia Zhao(赵书霞). Chin. Phys. B, 2021, 30(5): 055201.
[15] Measurement of electronegativity during the E to H mode transition in a radio frequency inductively coupled Ar/O2 plasma
Peng-Cheng Du(杜鹏程), Fei Gao(高飞, Xiao-Kun Wang(王晓坤), Yong-Xin Liu(刘永新), and You-Nian Wang(王友年). Chin. Phys. B, 2021, 30(3): 035202.
No Suggested Reading articles found!