Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(8): 080401    DOI: 10.1088/1674-1056/22/8/080401
GENERAL Prev   Next  

Effects of the symmetry energy slope on the axial oscillations of neutron stars

Wen De-Hua (文德华), Zhou Ying (周颖)
Department of Physics, South China University of Technology, Guangzhou 510641, China
Abstract  The impact of symmetry energy slope L on the axial w-mode oscillations is explored, where the range of the constrained slope L of symmetry energy at saturation density is adopted from 25 MeV to 115 MeV while keeping the equation of state (EOS) of symmetric nuclear matter fixed. Based on the range of the symmetry energy slope, a constraint on the frequency and damping time of the wI-mode of the neutron star is given. It is found that there is a perfect linear relation between the frequency and the stellar mass for a fixed slope L, and the softer symmetry energy corresponds to a higher frequency. Moreover, it is confirmed that both the frequencies and damping times have a perfect universal scaling behavior for the EOSs with different symmetry energy slopes at saturation density.
Keywords:  symmetry energy      neutron star      oscillation  
Received:  28 November 2012      Revised:  26 February 2013      Accepted manuscript online: 
PACS:  04.40.Dg (Relativistic stars: structure, stability, and oscillations)  
  26.60.-c (Nuclear matter aspects of neutron stars)  
  97.60.Jd (Neutron stars)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10947023 and 11275073), the Fundamental Research Funds for the Central Universities (Grant No. 2012ZZ0079), and sponsored by SRF for ROCS, SEM. This research has made use of NASA's Astrophysics Data System.
Corresponding Authors:  Wen De-Hua     E-mail:  wendehua@scut.edu.cn

Cite this article: 

Wen De-Hua (文德华), Zhou Ying (周颖) Effects of the symmetry energy slope on the axial oscillations of neutron stars 2013 Chin. Phys. B 22 080401

[1] Thorne K S and Campolattaro A 1967 ApJ 149 591
[2] Lindblom L and Detweiler S 1983 ApJS 53 73
[3] Chandrasekhar S and Ferrari V 1991 Proc. R. Soc. Lond. A 432 247
[4] Chandrasekhar S and Ferrari V 1991 Proc. R. Soc. Lond. A 434 449
[5] Kokkotas K D and Schutz B F 1992 MNRAS 255 119
[6] Andersson N and Kokkotas K D 1998 MNRAS 299 1059
[7] Benhar O, Berti E and Ferrari V 1999 MNRAS 310 797
[8] Wen D H, Li B A and Krastev P G 2009 Phys. Rev. C 80 025801
[9] Lattimer J M and Prakash M 2004 Science 304 536
[10] Lattimer J M and Prakash M 2007 Phys. Rep. 442 109
[11] Li B A, Chen L W and Ko C M 2008 Phys. Rep. 464 113
[12] Wen D H and Chen W 2011 Chin. Phys. B 20 029701
[13] Wen D H 2010 Chin. Phys. Lett. 27 010401
[14] Xiao Z G, Li B A, Chen L W, Yong G C and Zhang M 2009 Phys. Rev. Lett. 102 062502
[15] Tsang M B, Zhang Y X, Danielewicz P, Famiano M, Li Z X, Lynch W G and Steiner A W 2009 Phys. Rev. Lett. 102 122701
[16] Centelles M, Roca-Maza X, Vinas X and Warda M 2009 Phys. Rev. Lett. 102 122502
[17] Lehaut G, Gulminelli F and Lopez O 2009 Phys. Rev. Lett. 102 142503
[18] Chen L W, Ko C M and Li B A 2005 Phys. Rev. Lett. 94 032701
[19] Li B A and Chen L W 2005 Phys. Rev. C 72 064611
[20] Shetty D V, Yennello S J and Souliotis G A 2007 Phys. Rev. C 76 024606
[21] Klimkiewicz A et al. 2007 Phys. Rev. C 76 051603
[22] Danielewicz P and Lee J 2007 AIPC Conf. Proc. 947 301
[23] Chen L W, Ko C M, Li B A and Xu J 2010 Phys. Rev. C 82 024321
[24] Xu C, Li B A and Chen L W 2010 Phys. Rev. C 82 054607
[25] Newton W G, Gearheart M and Li B A 2011 arXiv: 1110.4043v1
[26] Wen D H, Newton W G and Li B A 2012 Phys. Rev. C 85 025801
[27] Chen L W, Cai B J, Ko C M, Li B A, Shen C and Xu J 2009 Phys. Rev. C 80 014322
[28] Liu M, Wang N, Li Z X and Zhang F S 2012 Phys. Rev. C 82 064306
[29] Roca-Maza X, Centelles M, Vinas X and Warda M 2011 Phys. Rev. Lett. 106 252501
[30] Steiner A W and Gandolfi S 2012 Phys. Rev. Lett. 108 081102
[31] Hebeler K, Lattimer J M, Pethick C J and Schwenk A 2010 Phys. Rev. Lett. 105 161102
[32] Gandolfi S, Carlson J and Reddy S 2012 Phys. Rev. C 85 032801
[33] Demorest P B, Pennucci T, Ransom S M, Roberts M S E and Hessels J W T 2010 Nature 467 1081
[34] Steiner A W, Lattimer J M and Brown E F 2010 Astrophys. J. 722 33
[35] Leins Nollert H P and Soffel M H 1993 Phys. Rev. D 48 3467
[36] Wen D H, Yan J and Liu X M 2012 Chin. Phys. B 21 060402
[37] Tsui L K and Leung P T 2005 MNRAS 357 1029
[1] Improved functional-weight approach to oscillatory patterns in excitable networks
Tao Li(李涛), Lin Yan(严霖), and Zhigang Zheng(郑志刚). Chin. Phys. B, 2022, 31(9): 090502.
[2] Quantum oscillations in a hexagonal boron nitride-supported single crystalline InSb nanosheet
Li Zhang(张力), Dong Pan(潘东), Yuanjie Chen(陈元杰), Jianhua Zhao(赵建华), and Hongqi Xu(徐洪起). Chin. Phys. B, 2022, 31(9): 098507.
[3] Oscillation properties of matter-wave bright solitons in harmonic potentials
Shu-Wen Guan(关淑文), Ling-Zheng Meng(孟令正), and Li-Chen Zhao(赵立臣). Chin. Phys. B, 2022, 31(8): 080506.
[4] Spatial and spectral filtering of tapered lasers by using tapered distributed Bragg reflector grating
Jing-Jing Yang(杨晶晶), Jie Fan(范杰), Yong-Gang Zou(邹永刚),Hai-Zhu Wang(王海珠), and Xiao-Hui Ma(马晓辉). Chin. Phys. B, 2022, 31(8): 084203.
[5] Enhancement of fMAX of InP-based HEMTs by double-recessed offset gate process
Bo Wang(王博), Peng Ding(丁芃), Rui-Ze Feng(封瑞泽), Shu-Rui Cao(曹书睿), Hao-Miao Wei(魏浩淼), Tong Liu(刘桐), Xiao-Yu Liu(刘晓宇), Hai-Ou Li(李海鸥), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(5): 058506.
[6] Impact of gate offset in gate recess on DC and RF performance of InAlAs/InGaAs InP-based HEMTs
Shurui Cao(曹书睿), Ruize Feng(封瑞泽), Bo Wang(王博), Tong Liu(刘桐), Peng Ding(丁芃), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(5): 058502.
[7] Nonlinear oscillation characteristics of magnetic microbubbles under acoustic and magnetic fields
Lixia Zhao(赵丽霞), Huimin Shi(史慧敏), Isaac Bello, Jing Hu(胡静), Chenghui Wang(王成会), and Runyang Mo(莫润阳). Chin. Phys. B, 2022, 31(3): 034302.
[8] Pattern transition and regulation in a subthalamopallidal network under electromagnetic effect
Zilu Cao(曹子露), Lin Du(都琳), Honghui Zhang(张红慧), Yuzhi Zhao(赵玉枝), Zhuan Shen(申转), and Zichen Deng(邓子辰). Chin. Phys. B, 2022, 31(11): 118701.
[9] Raman lasing and other nonlinear effects based on ultrahigh-Q CaF2 optical resonator
Tong Xing(邢彤), Enbo Xing(邢恩博), Tao Jia(贾涛), Jianglong Li(李江龙), Jiamin Rong(戎佳敏), Yanru Zhou(周彦汝), Wenyao Liu(刘文耀), Jun Tang(唐军), and Jun Liu(刘俊). Chin. Phys. B, 2022, 31(10): 104204.
[10] Periodic and chaotic oscillations in mutual-coupled mid-infrared quantum cascade lasers
Zhi-Wei Jia(贾志伟), Li Li(李丽), Yi-Yan Guo(郭一岩), An-Bang Wang(王安帮), Hong Han(韩红), Jin-Chuan Zhang(张锦川), Pu Li(李璞), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2022, 31(10): 100505.
[11] Impact of symmetric gate-recess length on the DC and RF characteristics of InP HEMTs
Ruize Feng(封瑞泽), Bo Wang(王博), Shurui Cao(曹书睿), Tong Liu(刘桐), Yongbo Su(苏永波), Wuchang Ding(丁武昌), Peng Ding(丁芃), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(1): 018505.
[12] Numerical analysis of motional mode coupling of sympathetically cooled two-ion crystals
Li-Jun Du(杜丽军), Yan-Song Meng(蒙艳松), Yu-Ling He(贺玉玲), and Jun Xie(谢军). Chin. Phys. B, 2021, 30(7): 073702.
[13] Constraints on the kinetic energy of type-Ic supernova explosion from young PSR J1906+0746 in a double neutron star candidate
Yi-Yan Yang(杨佚沿), Cheng-Min Zhang(张承民), Jian-Wei Zhang(张见微), and De-Hua Wang (王德华). Chin. Phys. B, 2021, 30(6): 068703.
[14] Simulation of the gravitational wave frequency distribution of neutron star-black hole mergers
Jianwei Zhang(张见微), Chengmin Zhang(张承民), Di Li(李菂), Xianghan Cui(崔翔翰), Wuming Yang(杨伍明), Dehua Wang(王德华), Yiyan Yang(杨佚沿), Shaolan Bi(毕少兰), and Xianfei Zhang(张先飞). Chin. Phys. B, 2021, 30(12): 120401.
[15] Temperature effects of GaAs/Al0.45Ga0.55As superlattices on chaotic oscillation
Xiao-Peng Luo(罗晓朋), Yan-Fei Liu(刘延飞), Dong-Dong Yang(杨东东), Cheng Chen(陈诚), Xiu-Jian Li(李修建), and Jie-Pan Ying(应杰攀). Chin. Phys. B, 2021, 30(10): 106805.
No Suggested Reading articles found!