Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(8): 080501    DOI: 10.1088/1674-1056/22/8/080501
GENERAL Prev   Next  

The fractional coupled KdV equations:Exact solutions and white noise functional approach

Hossam A. Ghanya c, A. S. Okb El Babb, A. M. Zabelc, Abd-Allah Hyderd
a Department of Mathematics, Faculty of Science, Taif University, Taif, Saudi Arabia;
b Department of Mathematics, Faculty of Science, Al-Azhar University, Cairo, Egypt;
c Department of Mathematics, Faculty of Industrial Education, Helwan University, Cairo, Egypt;
d Department of Physics and Mathematics, Faculty of Engineering, Al-Azhar University, Cairo, Egypt
Abstract  Variable coefficients and Wick-type stochastic fractional coupled KdV equations are investigated. By using the modified fractional sub-equation method, Hermite transform, and white noise theory the exact travelling wave solutions and white noise functional solutions are obtained, including the generalized exponential, hyperbolic, and trigonometric types.
Keywords:  coupled KdV equations      fractional calculus      white noise      Hermite transform  
Received:  21 October 2012      Revised:  07 March 2013      Accepted manuscript online: 
PACS:  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
  02.30.Jr (Partial differential equations)  
Corresponding Authors:  Hossam A. Ghany     E-mail:  h.abdelghany@yahoo.com

Cite this article: 

Hossam A. Ghany, A. S. Okb El Bab, A. M. Zabel, Abd-Allah Hyder The fractional coupled KdV equations:Exact solutions and white noise functional approach 2013 Chin. Phys. B 22 080501

[1] Holden H, Øsendal B, Ubøe J and Zhang T 1996 Stochastic Partial Differential Equations (Birhkäuser: Basel) pp. 159-163
[2] Sweilam N H, Khader M M and Al-Bar 2007 Phys. Lett. A 371 26
[3] Daftardar-Gejji V and Jafari H 2007 Appl. Math. Comput. 189 541
[4] Daftardar-Gejji V and Bhalekar S 2008 Appl. Math. Comput. 202 113
[5] Golbabai A and Sayevand K 2010 Nonlinear Sci. Lett. A 1 147
[6] Golbabai A and Sayevand K 2011 Comput. Math. Appl. 62 1003
[7] Li B A and Wang M L 2005 Chin. Phys. 14 1698
[8] Wang M L and Zhou Y B 2003 Phys. Lett. A 318 84
[9] Wang M L, Wang Y M and Zhang J L 2003 Chin. Phys. 12 1341
[10] Zhang J L, Ren D F and Wang M L 2003 Chin. Phys. 12 825
[11] Zhou Y B, Wang M L and Wang Y M 2003 Phys. Lett. A 308 31
[12] Li Z B and He H J 2010 Math. Comput. Appl. 15 970
[13] Wadati M J 1983 Phys. Soc. Jpn. 52 2642
[14] Xie Y C 2003 Phys. Lett. A 310 1617
[15] Xie Y C 2004 Chaos, Solitons and Fractals 20 33742
[16] Xie Y C 2004 J. Phys. A: Math. Gen. 37 522936
[17] Xie Y C 2004 Chaos, Solitons and Fractals 21 47380
[18] Chen B and Xie Y C 2005 J. Phys. A: Math. Gen. 38 81522
[19] Chen B and Xie Y C 2005 Chaos, Solitons and Fractals 23 2817
[20] Chen B and Xie Y C 2007 J. Comput. Appl. Math. 203 24963
[21] Ghany H A 2011 Chin. J. Phys. 49 926
[22] Ghany H A and Saad M 2012 Chin. J. Phys. 50 618
[23] Hou G L and Liu J C 2010 Chin. Phys. B 19 110305
[24] Tian N S, Xia Z Q and Wei C M 2005 Acta Phys. Sin. 54 2463 (in Chinese)
[25] Grimshaw R and Christodoulides P 2010 Physica D 239 635
[26] Momani S 2005 Math. Comp. Simul. 70 110
[27] Oldham K B and Spanier J 1974 The Fractional Calculus (New York: Academic Press)
[28] Jumarie G 2006 Comput. Math. Appl. 51 1367
[29] Odibat Z and Momani S 2008 Chaos, Solitons and Fractals 36 167
[30] Zhang S, Zong Q A, Liu D and Gao Q 2010 Communications in Fractional Calculus 1 48
[31] Podlubny I 1999 Fractional Differential Equations (New York: Academic Press)
[32] He J H 2000 Int. J. Nonlinear Mech. 35 37
[33] He J H, Elagan S K and Li Z B 2012 Phys. Lett. A 376 257
[34] Ghany H A accepted by Chin. J. Phys. 51
[35] Ghany H A and Hyder A 2013 J. Compt. Anal. Appl. 15 1332
[36] Fan E G 2002 Phys. Lett. A 300 243
[37] Fan E G 2003 J. Phys. A: Math. Gen. 36 7009
[38] Fan E G and Dai H 2003 Comput. Phys. Commun. 153 17
[39] Fan E G and Hon Y 2003 Chaos, Solitons and Fractals 15 559
[40] He J H 1999 Comput. Methods Appl. Mech. Engrg. 178 257
[41] He J H 2012 Abstract and Applied Analysis 2012 916793
[42] He J H and Wu X H 2006 Chaos, Solitons and Fractals 30 700
[43] Wu X H and He J H 2007 Comput. Math. Appl. 54 966
[44] Benth E and Gjerde J 1998 Potential Anal. 2 179
[1] An incommensurate fractional discrete macroeconomic system: Bifurcation, chaos, and complexity
Abderrahmane Abbes, Adel Ouannas, and Nabil Shawagfeh. Chin. Phys. B, 2023, 32(3): 030203.
[2] Solutions and memory effect of fractional-order chaotic system: A review
Shaobo He(贺少波), Huihai Wang(王会海), and Kehui Sun(孙克辉). Chin. Phys. B, 2022, 31(6): 060501.
[3] A mathematical analysis: From memristor to fracmemristor
Wu-Yang Zhu(朱伍洋), Yi-Fei Pu(蒲亦非), Bo Liu(刘博), Bo Yu(余波), and Ji-Liu Zhou(周激流). Chin. Phys. B, 2022, 31(6): 060204.
[4] Sparse identification method of extracting hybrid energy harvesting system from observed data
Ya-Hui Sun(孙亚辉), Yuan-Hui Zeng(曾远辉), and Yong-Ge Yang(杨勇歌). Chin. Phys. B, 2022, 31(12): 120203.
[5] Modeling and character analyzing of multiple fractional-order memcapacitors in parallel connection
Xiang Xu(徐翔), Gangquan Si(司刚全), Zhang Guo(郭璋), and Babajide Oluwatosin Oresanya. Chin. Phys. B, 2022, 31(1): 018401.
[6] Adaptive synchronization of a class of fractional-order complex-valued chaotic neural network with time-delay
Mei Li(李梅), Ruo-Xun Zhang(张若洵), and Shi-Ping Yang(杨世平). Chin. Phys. B, 2021, 30(12): 120503.
[7] Transient transition behaviors of fractional-order simplest chaotic circuit with bi-stable locally-active memristor and its ARM-based implementation
Zong-Li Yang(杨宗立), Dong Liang(梁栋), Da-Wei Ding(丁大为), Yong-Bing Hu(胡永兵), and Hao Li(李浩). Chin. Phys. B, 2021, 30(12): 120515.
[8] Hidden attractors in a new fractional-order discrete system: Chaos, complexity, entropy, and control
Adel Ouannas, Amina Aicha Khennaoui, Shaher Momani, Viet-Thanh Pham, Reyad El-Khazali. Chin. Phys. B, 2020, 29(5): 050504.
[9] Ratchet transport of overdamped particles in superimposed driven lattices
Shu-Na Huang(黄淑娜), Wei-Jing Zhu(朱薇静), Xiao-Qun Huang(黄小群), Bao-Quan Ai(艾保全), Feng-Guo Li(李丰果). Chin. Phys. B, 2019, 28(4): 040502.
[10] Carlson iterating rational approximation and performance analysis of fractional operator with arbitrary order
Qiu-Yan He(何秋燕), Bo Yu(余波), Xiao Yuan(袁晓). Chin. Phys. B, 2017, 26(4): 040202.
[11] A novel color image encryption scheme using fractional-order hyperchaotic system and DNA sequence operations
Li-Min Zhang(张立民), Ke-Hui Sun(孙克辉), Wen-Hao Liu(刘文浩), Shao-Bo He(贺少波). Chin. Phys. B, 2017, 26(10): 100504.
[12] Abundant solutions of Wick-type stochastic fractional 2D KdV equations
Hossam A. Ghany, Abd-Allah Hyder. Chin. Phys. B, 2014, 23(6): 060503.
[13] Uniqueness, reciprocity theorem, and plane waves in thermoelastic diffusion with fractional order derivative
Rajneesh Kumar, Vandana Gupta. Chin. Phys. B, 2013, 22(7): 074601.
[14] Transfer function modeling and analysis of the open-loop Buck converter using the fractional calculus
Wang Fa-Qiang (王发强), Ma Xi-Kui (马西奎). Chin. Phys. B, 2013, 22(3): 030506.
[15] Average consensus of multi-agent systems with communication time delays and noisy links
Sun Yong-Zheng (孙永征), Li Wang (李望), Ruan Jiong (阮炯). Chin. Phys. B, 2013, 22(3): 030510.
No Suggested Reading articles found!