Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(9): 090502    DOI: 10.1088/1674-1056/ac7458
GENERAL Prev   Next  

Improved functional-weight approach to oscillatory patterns in excitable networks

Tao Li(李涛)1,2, Lin Yan(严霖)1,2, and Zhigang Zheng(郑志刚)1,2,3,†
1 College of Information Science and Technology, Huaqiao University, Xiamen 361021, China;
2 Institute of Systems Science, Huaqiao University, Xiamen 361021, China;
3 School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
Abstract  Studies of sustained oscillations on complex networks with excitable node dynamics received much interest in recent years. Although an individual unit is non-oscillatory, they may organize to form various collective oscillatory patterns through networked connections. An excitable network usually possesses a number of oscillatory modes dominated by different Winfree loops and numerous spatiotemporal patterns organized by different propagation path distributions. The traditional approach of the so-called dominant phase-advanced drive method has been well applied to the study of stationary oscillation patterns on a network. In this paper, we develop the functional-weight approach that has been successfully used in studies of sustained oscillations in gene-regulated networks by an extension to the high-dimensional node dynamics. This approach can be well applied to the study of sustained oscillations in coupled excitable units. We tested this scheme for different networks, such as homogeneous random networks, small-world networks, and scale-free networks and found it can accurately dig out the oscillation source and the propagation path. The present approach is believed to have the potential in studies competitive non-stationary dynamics.
Keywords:  self-sustained oscillation      excitable network      functional-weight approach  
Received:  18 April 2022      Revised:  11 May 2022      Accepted manuscript online:  29 May 2022
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  87.19.lq (Neuronal wave propagation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11875135).
Corresponding Authors:  Zhigang Zheng     E-mail:  zgzheng@hqu.edu.cn

Cite this article: 

Tao Li(李涛), Lin Yan(严霖), and Zhigang Zheng(郑志刚) Improved functional-weight approach to oscillatory patterns in excitable networks 2022 Chin. Phys. B 31 090502

[1] Watts D J and Strogatz S H 1998 Nature 393 440
[2] Barabási A L and Albert R 1999 Science 286 509
[3] Strogatz S H 2001 Nature 410 268
[4] Boccaletti S, Latora V, Moreno Y, Chavez M and Hwang D U 2006 Phys. Rep. 424 175
[5] Bullmore E and Sporns O 2009 Nat. Rev. Neurosci. 10 186
[6] Glass L, Mackey M C and Zweifel P F 1989 Phys. Today 42 72
[7] Goldbeter A and Keizer J 1998 Phys. Today 51 86
[8] Tsai T Y C, Choi Y S, Ma W, Pomerening J R, Tang C and Ferrell J E Jr 2008 Science 321 126
[9] Kuramoto Y 1975 International Symposium on Mathematical Problems in Theoretical Physics, Lecture Notes in Physics 30 (New York:Springer) p. 420
[10] Kuramoto Y 1984 Chemical Oscillations, Waves, and Turbulence (Berlin:Springer) p. 111
[11] Kuramoto Y and Nishikawa I 1987 J. Stat. Phys. 49 569
[12] Kuramoto Y 1991 Physica D 50 15
[13] Winfree A T 1972 Science 175 634
[14] Zhang Z K, Liu C, Zhan X X, Lu X, Zhang C X and Zhang Y C 2016 Phys. Rep. 651 1
[15] Qian Y, Song X Y, Shi W, Chen G Z and Xue Y 2006 Acta Phys. Sin. 55 4420 (in Chinese)
[16] Ma J, Wang C N, Jin W Y, Li Y L and Pu Z S 2008 Chin. Phys. B 17 2844
[17] Y Qian, X D Huang, X H Liao and G Hu 2010 Chin. Phys. B 19 050513
[18] Ma X J, Huang L, Lai Y C and Zheng Z G 2009 Phys. Rev. E 79 056106
[19] Ott E 1993 Chaos in Dynamical Systems. (Cambridge:Cambridge University Press)
[20] O'Donovan M J 1999 Current Opinion in Neurobiology 9 94
[21] Sanchez-Vives M V and McCormick D A 2000 Nature Neurosci. 3 1027
[22] Lewis T J and Rinzel J 2000 Network:Comput. Neural Syst. 11 299
[23] Karlebach G and Shamir R 2008 Nature Reviews Molecular Cell Biology 9 770
[24] Huang X, Troy W C, Yang Q, Ma H, Laing C R, Schiff S J and Wu J Y 2004 J. Neurosci. 24 9897
[25] Dahlem M A, Schneide F M and Schöll E 2008 Chaos 18 026110
[26] Kanakov O I, Osipov G V, Chan C K and Kurths J 2007 Chaos 17 015111
[27] Huang X D, Qian Y, Zhang X M and Hu G 2010 Phys. Rev. E 81 051903
[28] Winfree A T 1991 Chaos 1 303
[29] Qian Y, Huang X D, Hu G and Liao X H 2010 Phys. Rev. E 81 036101
[30] Zhang Z Y, Li Z, Qian Y, Hu G and Zheng Z 2014 Europhys. Lett 105 18003
[31] Zhang Z, Zheng Z, Niu H, Mi Y, Wu S and Hu G 2015 Phys. Rev. E 91 012814
[32] Bär M and Eiswirth M 1993 Phys. Rev. E 48 R1635
[33] Lewis T J and Rinzel J 2000 Network:Comput. Neural Syst. 11 299
[34] Roxin A, Riecke H and Solla S A 2004 Phys. Rev. Lett. 92 198101
[35] Müler-Linow M, Hilgetag C C and Hütt M T 2008 PLos Comput. Biol. 4 e1000190
[36] Kuperman M and Abramson G 2001 Phys.Rev. Lett. 86 2909
[37] Greenberg J M and Hastings S P 1978 SIAM J. Appl. Math. 34 515
[38] Bak P, Chen K and Tang C 1990 Phys. Lett. A 147 297
[39] Qian Y, Zhang C, Zhang G, Liu F and Zheng Z 2020 Nonlinear Dynamics 99 1415
[1] Dominant phase-advanced driving analysis of self-sustained oscillations in biological networks
Zhi-gang Zheng(郑志刚), Yu Qian(钱郁). Chin. Phys. B, 2018, 27(1): 018901.
No Suggested Reading articles found!