|
|
Excitation spectrum and structure factor of a two-component Bose-Einstein condensate in different hyperfine states |
Han Yu-Feng (韩玉峰)a, Chen Liang (陈良)b, Liu Hou-Tong (刘厚通)a, Huang Xian-Shan (黄仙山)a |
a Department of Mathematics and Physics, Anhui University of Technology, Ma'anshan 243032, China; b Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China |
|
|
Abstract The elementary excitation spectrum of a two-component Bose-Einstein condensate in different hyperfine states is obtained by Green's function method. It is found to have two branches. In the long wave-length limit, the two branches of the excitation spectrum are reduced to one phonon excitation and one single-particle excitation. The single-particle one has an energy gap. When the energy gap exists, we study the Landau critical velocity and the depletion of the condensate. With the obtained Green's functions, we calculate the structure factor of a two-component condensate. It is found that the static structure factor comprises only the branch of the phonon excitation and the single-particle excitation makes no contribution to the structure factor.
|
Received: 26 September 2012
Revised: 22 January 2013
Accepted manuscript online:
|
PACS:
|
03.75.Lm
|
(Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10974189, 10675114, 10675115, and 41075027) and the Natural Science College Key Projects of Anhui Province, China (Grant No. KJ2011A040). |
Corresponding Authors:
Han Yu-Feng
E-mail: hipeak@ahut.edu.cn
|
Cite this article:
Han Yu-Feng (韩玉峰), Chen Liang (陈良), Liu Hou-Tong (刘厚通), Huang Xian-Shan (黄仙山) Excitation spectrum and structure factor of a two-component Bose-Einstein condensate in different hyperfine states 2013 Chin. Phys. B 22 080308
|
[1] |
Anderson M H, Ensher J R, Matthews M R, Wieman C E and Cornell E A 1995 Science 269 198
|
[2] |
Davis K B, Mewes M O, Andrews M R, van Druten N J, Durfee D S, Kurn D M and Ketterle W 1995 Phys. Rev. Lett. 75 3969
|
[3] |
Dalfovo F, Giorgini S, Pitevskii L P and Stringari S 1999 Rev. Mod. Phys. 71 463
|
[4] |
Pethick C J and Smith H 2002 Bose-Einstein Condensation in Dilute Gases (Cambridge: Cambridge University Press) pp. 55-68
|
[5] |
Bloch I, Dalibard J and Zwerger W 2008 Rev. Mod. Phys. 80 885
|
[6] |
Giorgini S, Pitaevskii L P and Stringari S 2008 Rev. Mod. Phys. 80 1215
|
[7] |
Ji A C, Liu W M, Song J L and Zhou F 2008 Phys. Rev. Lett. 101 010402
|
[8] |
Penrose O and Onsager L 1956 Phys. Rev. 104 576
|
[9] |
Yang C N 1962 Rev. Mod. Phys. 34 4
|
[10] |
Navon N, Piatecki S, Günter K, Rem B, Nguyen T C, Chevy F, Krauth W and Salomon C 2011 Phys. Rev. Lett. 107 135301
|
[11] |
Myatt C J, Burt E A, Ghrist R W, Cornell E A and Wieman C E 1997 Phys. Rev. Lett. 78 586
|
[12] |
L i S C and Duan W S 2009 Chin. Phys. B 18 4177
|
[13] |
Wang B, Lü C H, Tan W T and Tan L 2010 Chin. Phys. B 19 117501
|
[14] |
Wang Q, Wen L and Li Z D 2012 Chin. Phys. B 21 080501
|
[15] |
Stamper-Kurn D M, Andrews M R, Chikkatur A P, Inouye S, Miesner H J, Stenger J and Ketterle W 1998 Phys. Rev. Lett. 80 2027
|
[16] |
Smerzi A and Fantoni S 1997 Phys. Rev. Lett. 78 3589
|
[17] |
Marino L, Raghavan S, Fantoni S, Shenoy S R and Smerzi A 1999 Phys. Rev. A 60 487
|
[18] |
Meiser F and Zwerger W 2001 Phys. Rev. A 64 033610
|
[19] |
Albiez M, Gati R, Folling J, Hunsmann S, Cristiani M and Oberthaler M K 2005 Phys. Rev. Lett. 95 010402
|
[20] |
Levy S, Lahoud E, Shomroni I and Steinhauer J 2007 Nature 449 06186
|
[21] |
Liu X X, Pu H, Xiong B, Liu W M and Gong J B 2009 Phys. Rev. A 79 013423
|
[22] |
Li L, Malomed B A, Mihalache D and Liu W M 2006 Phys. Rev. E 73 066610
|
[23] |
Cao Y Z and Kuang L M 2006 Chin. Phys. Lett. 23 279
|
[24] |
Tong Z Y and Kuang L M 2000 Chin. Phys. Lett. 17 469
|
[25] |
Search C P, Rojo A G and Nerman P R 2001 Phys. Rev. A 64 013615
|
[26] |
Goldstein E V and Meystre P 1997 Phys. Rev. A 55 2935
|
[27] |
Chen L, Kong W, Wen H M, Ye B J, Zhou X Y and Han R D 2010 J. Low. Temp. Phys. 161 334
|
[28] |
Bogoliubov N N 1947 J. Phys. (Moscow) 11 23
|
[29] |
Lifshitz E M and Pitaevskii L P 1991 Statistical Physics (Part 2) (Oxford: Pergamon) pp. 101-105
|
[30] |
Beliaev S T 1958 Soviet Phys. JETP 7 289
|
[31] |
Shi H and Griffin A 1998 Phys. Rep. 304 1
|
[32] |
Mahan G D 1981 Many-Particle Physics (New York: Plenum)
|
[33] |
Ozeri R, Katz N, Steinhauer J and Davidson N 2005 Rev. Mod. Phys. 77 187
|
[34] |
Stamper-Kurn D M, Chikkatur A P, Görlitz A, Inouye S, Gupta S, Pritchard D E and Ketterle W 1999 Phys. Rev. Lett. 83 2876
|
[35] |
Zambelli F, Pitaevskii L, Stamper-Kurn D M and Stringari S 2000 Phys. Rev. A 61 063608
|
[36] |
Sun B and Pindzola M S 2010 J. Phys. B: At. Mol. Opt. Phys. 43 055301
|
[37] |
DuBois J L and Glyde H R 2001 Phys. Rev. A 63 023602
|
[38] |
McMillan W L 1965 Phys. Rev. 138 A442
|
[39] |
Stenger J, Inouye S, Chikkatur A P, Stamper-Kurn D M, Pritchard D E and Ketterle W 1999 Phys. Rev. Lett. 82 4569
|
[40] |
Hugenholtz N M and Pines 1959 Phys. Rev. 116 489
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|