Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(8): 080308    DOI: 10.1088/1674-1056/22/8/080308
GENERAL Prev   Next  

Excitation spectrum and structure factor of a two-component Bose-Einstein condensate in different hyperfine states

Han Yu-Feng (韩玉峰)a, Chen Liang (陈良)b, Liu Hou-Tong (刘厚通)a, Huang Xian-Shan (黄仙山)a
a Department of Mathematics and Physics, Anhui University of Technology, Ma'anshan 243032, China;
b Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
Abstract  The elementary excitation spectrum of a two-component Bose-Einstein condensate in different hyperfine states is obtained by Green's function method. It is found to have two branches. In the long wave-length limit, the two branches of the excitation spectrum are reduced to one phonon excitation and one single-particle excitation. The single-particle one has an energy gap. When the energy gap exists, we study the Landau critical velocity and the depletion of the condensate. With the obtained Green's functions, we calculate the structure factor of a two-component condensate. It is found that the static structure factor comprises only the branch of the phonon excitation and the single-particle excitation makes no contribution to the structure factor.
Keywords:  elementary excitation      Bose-Einstein condensate      structure factor  
Received:  26 September 2012      Revised:  22 January 2013      Accepted manuscript online: 
PACS:  03.75.Lm (Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10974189, 10675114, 10675115, and 41075027) and the Natural Science College Key Projects of Anhui Province, China (Grant No. KJ2011A040).
Corresponding Authors:  Han Yu-Feng     E-mail:  hipeak@ahut.edu.cn

Cite this article: 

Han Yu-Feng (韩玉峰), Chen Liang (陈良), Liu Hou-Tong (刘厚通), Huang Xian-Shan (黄仙山) Excitation spectrum and structure factor of a two-component Bose-Einstein condensate in different hyperfine states 2013 Chin. Phys. B 22 080308

[1] Anderson M H, Ensher J R, Matthews M R, Wieman C E and Cornell E A 1995 Science 269 198
[2] Davis K B, Mewes M O, Andrews M R, van Druten N J, Durfee D S, Kurn D M and Ketterle W 1995 Phys. Rev. Lett. 75 3969
[3] Dalfovo F, Giorgini S, Pitevskii L P and Stringari S 1999 Rev. Mod. Phys. 71 463
[4] Pethick C J and Smith H 2002 Bose-Einstein Condensation in Dilute Gases (Cambridge: Cambridge University Press) pp. 55-68
[5] Bloch I, Dalibard J and Zwerger W 2008 Rev. Mod. Phys. 80 885
[6] Giorgini S, Pitaevskii L P and Stringari S 2008 Rev. Mod. Phys. 80 1215
[7] Ji A C, Liu W M, Song J L and Zhou F 2008 Phys. Rev. Lett. 101 010402
[8] Penrose O and Onsager L 1956 Phys. Rev. 104 576
[9] Yang C N 1962 Rev. Mod. Phys. 34 4
[10] Navon N, Piatecki S, Günter K, Rem B, Nguyen T C, Chevy F, Krauth W and Salomon C 2011 Phys. Rev. Lett. 107 135301
[11] Myatt C J, Burt E A, Ghrist R W, Cornell E A and Wieman C E 1997 Phys. Rev. Lett. 78 586
[12] L i S C and Duan W S 2009 Chin. Phys. B 18 4177
[13] Wang B, Lü C H, Tan W T and Tan L 2010 Chin. Phys. B 19 117501
[14] Wang Q, Wen L and Li Z D 2012 Chin. Phys. B 21 080501
[15] Stamper-Kurn D M, Andrews M R, Chikkatur A P, Inouye S, Miesner H J, Stenger J and Ketterle W 1998 Phys. Rev. Lett. 80 2027
[16] Smerzi A and Fantoni S 1997 Phys. Rev. Lett. 78 3589
[17] Marino L, Raghavan S, Fantoni S, Shenoy S R and Smerzi A 1999 Phys. Rev. A 60 487
[18] Meiser F and Zwerger W 2001 Phys. Rev. A 64 033610
[19] Albiez M, Gati R, Folling J, Hunsmann S, Cristiani M and Oberthaler M K 2005 Phys. Rev. Lett. 95 010402
[20] Levy S, Lahoud E, Shomroni I and Steinhauer J 2007 Nature 449 06186
[21] Liu X X, Pu H, Xiong B, Liu W M and Gong J B 2009 Phys. Rev. A 79 013423
[22] Li L, Malomed B A, Mihalache D and Liu W M 2006 Phys. Rev. E 73 066610
[23] Cao Y Z and Kuang L M 2006 Chin. Phys. Lett. 23 279
[24] Tong Z Y and Kuang L M 2000 Chin. Phys. Lett. 17 469
[25] Search C P, Rojo A G and Nerman P R 2001 Phys. Rev. A 64 013615
[26] Goldstein E V and Meystre P 1997 Phys. Rev. A 55 2935
[27] Chen L, Kong W, Wen H M, Ye B J, Zhou X Y and Han R D 2010 J. Low. Temp. Phys. 161 334
[28] Bogoliubov N N 1947 J. Phys. (Moscow) 11 23
[29] Lifshitz E M and Pitaevskii L P 1991 Statistical Physics (Part 2) (Oxford: Pergamon) pp. 101-105
[30] Beliaev S T 1958 Soviet Phys. JETP 7 289
[31] Shi H and Griffin A 1998 Phys. Rep. 304 1
[32] Mahan G D 1981 Many-Particle Physics (New York: Plenum)
[33] Ozeri R, Katz N, Steinhauer J and Davidson N 2005 Rev. Mod. Phys. 77 187
[34] Stamper-Kurn D M, Chikkatur A P, Görlitz A, Inouye S, Gupta S, Pritchard D E and Ketterle W 1999 Phys. Rev. Lett. 83 2876
[35] Zambelli F, Pitaevskii L, Stamper-Kurn D M and Stringari S 2000 Phys. Rev. A 61 063608
[36] Sun B and Pindzola M S 2010 J. Phys. B: At. Mol. Opt. Phys. 43 055301
[37] DuBois J L and Glyde H R 2001 Phys. Rev. A 63 023602
[38] McMillan W L 1965 Phys. Rev. 138 A442
[39] Stenger J, Inouye S, Chikkatur A P, Stamper-Kurn D M, Pritchard D E and Ketterle W 1999 Phys. Rev. Lett. 82 4569
[40] Hugenholtz N M and Pines 1959 Phys. Rev. 116 489
[1] Anderson localization of a spin-orbit coupled Bose-Einstein condensate in disorder potential
Huan Zhang(张欢), Sheng Liu(刘胜), and Yongsheng Zhang(张永生). Chin. Phys. B, 2022, 31(7): 070305.
[2] Superfluid to Mott-insulator transition in a one-dimensional optical lattice
Wenliang Liu(刘文良), Ningxuan Zheng(郑宁宣), Jun Jian(蹇君), Li Tian(田丽), Jizhou Wu(武寄洲), Yuqing Li(李玉清), Yongming Fu(付永明), Peng Li(李鹏), Vladimir Sovkov, Jie Ma(马杰), Liantuan Xiao(肖连团), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(7): 073702.
[3] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[4] Measuring gravitational effect of superintense laser by spin-squeezed Bose—Einstein condensates interferometer
Eng Boon Ng and C. H. Raymond Ooi. Chin. Phys. B, 2022, 31(5): 053701.
[5] Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(4): 040306.
[6] Spin current in a spinor Bose-Einstein condensate induced by a gradient magnetic field
Li Tian(田丽), Ningxuan Zheng(郑宁宣), Jun Jian(蹇君), Wenliang Liu(刘文良), Jizhou Wu(武寄洲), Yuqing Li(李玉清), Yongming Fu(付永明), Peng Li(李鹏), Vladimir Sovkov, Jie Ma(马杰), Liantuan Xiao(肖连团), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(11): 110302.
[7] Dynamics of bright soliton in a spin-orbit coupled spin-1 Bose-Einstein condensate
Hui Guo(郭慧), Xu Qiu(邱旭), Yan Ma(马燕), Hai-Feng Jiang(姜海峰), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2021, 30(6): 060310.
[8] Dynamical stability of dipolar condensate in a parametrically modulated one-dimensional optical lattice
Ji-Li Ma(马吉利), Xiao-Xun Li(李晓旬), Rui-Jin Cheng(程瑞锦), Ai-Xia Zhang(张爱霞), and Ju-Kui Xue(薛具奎). Chin. Phys. B, 2021, 30(6): 060307.
[9] Spin-orbit-coupled spin-1 Bose-Einstein condensates confined in radially periodic potential
Ji Li(李吉), Tianchen He(何天琛), Jing Bai(白晶), Bin Liu(刘斌), and Huan-Yu Wang(王寰宇). Chin. Phys. B, 2021, 30(3): 030302.
[10] Quantum reflection of a Bose-Einstein condensate with a dark soliton from a step potential
Dong-Mei Wang(王冬梅), Jian-Chong Xing(邢健崇), Rong Du(杜荣), Bo Xiong(熊波), and Tao Yang(杨涛). Chin. Phys. B, 2021, 30(12): 120303.
[11] Merging and splitting dynamics between two bright solitons in dipolar Bose-Einstein condensates
Xin Li(李欣), Peng Gao(高鹏), Zhan-Ying Yang(杨战营), and Wen-Li Yang(杨文力). Chin. Phys. B, 2021, 30(12): 120501.
[12] Nonlinear dynamical stability of gap solitons in Bose-Einstein condensate loaded in a deformed honeycomb optical lattice
Hongjuan Meng(蒙红娟), Yushan Zhou(周玉珊), Xueping Ren(任雪平), Xiaohuan Wan(万晓欢), Juan Zhang(张娟), Jing Wang(王静), Xiaobei Fan(樊小贝), Wenyuan Wang(王文元), and Yuren Shi(石玉仁). Chin. Phys. B, 2021, 30(12): 126701.
[13] Adjustable half-skyrmion chains induced by SU(3) spin-orbit coupling in rotating Bose-Einstein condensates
Li Wang(王力), Ji Li(李吉), Xiao-Lin Zhou(周晓林), Xiang-Rong Chen(陈向荣), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2021, 30(11): 110312.
[14] Spinor F=1 Bose-Einstein condensates loaded in two types of radially-periodic potentials with spin-orbit coupling
Ji-Guo Wang(王继国), Yue-Qing Li(李月晴), Han-Zhao Tang(唐翰昭), and Ya-Fei Song(宋亚飞). Chin. Phys. B, 2021, 30(10): 106701.
[15] Simple and robust method for rapid cooling of 87Rb to quantum degeneracy
Chun-Hua Wei(魏春华), Shu-Hua Yan(颜树华). Chin. Phys. B, 2020, 29(6): 064208.
No Suggested Reading articles found!