Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(8): 083303    DOI: 10.1088/1674-1056/22/8/083303
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Mössbauer studies on the shape effect of Fe84.94Si9.68Al5.38 particles on their microwave permeability

Han Man-Gui (韩满贵), Deng Long-Jiang (邓龙江)
State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
Abstract  Ball milling for long time (such as 10, 20, and 30 h) can transform Fe84.94Si9.68Al5.38 alloy powders with irregular shapes into flakes. X-ray diffraction (XRD) and Mössbauer measurements have proven that the unmilled particles and the flakes obtained by milling for 10 h have the same D03-type superlattice structure. The flakes obtained by milling for 20 h and 30 h have the same disorder α-Fe(Si, Al) structure. There are more than 6 absorption peaks in the transmission Mössbauer spectra (TMSs) for the particles with D03-type superlattice structure, which can be fitted with 5 sextets representing 5 different Fe-site environments. However, only 6 TMS absorption peaks have been found for particles with a disorder α-Fe(Si, Al) structure, which can be fitted with the distributions of Mössbauer parameters (Bhf, isomer shift). The TMS results show that the flaky particles have a stronger tendency to possess the planar magnetic anisotropy. As the result, the flakes have larger microwave permeability values than particles with irregular shapes. The conversion electron Mössbauer spectra (CEMSs) also show the significantly different Fe-sites environments between the alloy surface and the inside.
Keywords:  Mössbauer spectroscopy      magnetic permeability      superlattice  
Received:  17 October 2012      Revised:  04 January 2013      Accepted manuscript online: 
PACS:  33.45.+x (M?ssbauer spectra)  
  07.55.-w (Magnetic instruments and components)  
  68.65.Cd (Superlattices)  
Fund: Project supported by the National Key Basic Research Program of China (Grant No. 2010CB334702), the China National Funds for Distinguished Young Scientists (Grant No. 51025208), the International Collaboration Project of Sichuan Province, China (Grant Nos. 2011HH0001 and 2012JQ0053), and the Program for New Century Excellent Talents in Universities, China (Grant No. NCET-11-0060).
Corresponding Authors:  Han Man-Gui     E-mail:  mangui@gmail.com

Cite this article: 

Han Man-Gui (韩满贵), Deng Long-Jiang (邓龙江) Mössbauer studies on the shape effect of Fe84.94Si9.68Al5.38 particles on their microwave permeability 2013 Chin. Phys. B 22 083303

[1] Helms H H and Adams E 1964 J. Appl. Phys. 35 871
[2] Han M, Liang D, Xie J and Deng L 2012 J. Appl. Phys. 111 07A317
[3] Liu L, Yang Z H, Deng C R, Li Z W, Abshinova M A and Kong L B 2012 J. Magn. Magn. Mater. 324 1786
[4] Liu J H, Ma T Y, Tong H, Luo W and Yan M 2010 J. Magn. Magn. Mater. 322 940
[5] Walser R M, Win W and Valanju P M 1998 IEEE Trans. Magn. 34 1390
[6] Lu H P, Han M G, Cai L and Deng L J 2011 Chin. Phys. B 20 060701
[7] Han M G, Ou Y, Liang D F and Deng L J 2009 Chin. Phys. B 18 1261
[8] Rozanov K N 2000 IEEE Trans. Antennas Propag. 48 1230
[9] Han M, Tang W, Chen W, Zhou H and Deng L 2010 J. Appl. Phys. 107 09A958
[10] Li Z W, Yang Z H and Kong L B 2011 J. Appl. Phys. 110 063907
[11] Li Z W, Ma X M, Pang H and Li F S 2012 Chin. Phys. B 21 047601
[12] Sun X Y, Zhen L, Xu C Y, Lü L X, Shao W Z and Sun X D 2009 Mater. Lett. 63 64
[13] Sun J R, Wang Z G, Wang Y Y, Zhu Y B, Pang L L, Shen T L and Li F S 2012 Nucl. Instrum. Method B 286 277
[14] Li Z W, Yang X, Wang H B, Liu X and Li F S 2009 Chin. Phys. B 18 4829
[15] Wu L, Wang H B, Wang T and Li F S 2006 Acta Phys. Sin. 55 6515 (in Chinese)
[16] Sun J R, Wang Z G, Wang Y Y, Yao C F, Wei K F and Li F S 2011 Nucl. Instrum. Method B 269 873
[17] Ma X M, Li Z W, Wei J Q, Wang T and Li F S 2010 Chin. Phys. B 19 097401
[18] Nomura K, Suzuki K, Sawada T, Ujihira Y and Yoshida S 2003 Hyperfine Interact. 148 345
[19] Miyazaki M, Ichikawa M and Komatsu T 1991 J. Appl. Phys. 69 1556
[20] Stearns M B 1963 Phys. Rev. 129 1136
[21] Nomura K, Ujihira Y, Yanagitani A and Kawashima N 1999 J. Mater. Sci. 29 6019
[22] Wang W, Ma T Y and Yan M 2008 J. Alloys Compd. 459 447
[23] Zuo B, Saraswati N, Sritharan T and Hng H H 2004 Mater. Sci. Eng. A 371 210
[24] Lagarkov A N, Rozanov K N, Simonov N A and Starostenko S N 2005 Handbook of Advanced Magnetic Materials (Beijing: Tsinghua University Press) Vol. IV
[25] Ikeda O, Ohnuma I, Kainuma R and Ishida K 2001 Intermetallics 9 755
[26] Nomura K, Ujihira Y, Sueki M and Kawashima N 1990 Hyperfine Interact. 54 839
[27] Keune W 2012 Hyperfine Interact. 204 13
[28] Gubbens P C and Buschow K H J 1974 J. Phys. F 4 921
[29] Ma R Z and Xu Y T 1998 Mössbauer Spectroscopy (Beijing: Science Press) p. 348 (in Chinese)
[30] Preston R S, Hanna S S and Heberle J 1962 Phys. Rev. 128 2207
[1] Strain compensated type II superlattices grown by molecular beam epitaxy
Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2023, 32(4): 046802.
[2] High-performance extended short-wavelength infrared PBn photodetectors based on InAs/GaSb/AlSb superlattices
Junkai Jiang(蒋俊锴), Faran Chang(常发冉), Wenguang Zhou(周文广), Nong Li(李农), Weiqiang Chen(陈伟强), Dongwei Jiang(蒋洞微), Hongyue Hao(郝宏玥), Guowei Wang(王国伟), Donghai Wu(吴东海), Yingqiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2023, 32(3): 038503.
[3] Growth of high material quality InAs/GaSb type-II superlattice for long-wavelength infrared range by molecular beam epitaxy
Fang-Qi Lin(林芳祁), Nong Li(李农), Wen-Guang Zhou(周文广), Jun-Kai Jiang(蒋俊锴), Fa-Ran Chang(常发冉), Yong Li(李勇), Su-Ning Cui(崔素宁), Wei-Qiang Chen(陈伟强), Dong-Wei Jiang(蒋洞微), Hong-Yue Hao(郝宏玥), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2022, 31(9): 098504.
[4] Two-dimensional Sb cluster superlattice on Si substrate fabricated by a two-step method
Runxiao Zhang(张润潇), Zi Liu(刘姿), Xin Hu(胡昕), Kun Xie(谢鹍), Xinyue Li(李新月), Yumin Xia(夏玉敏), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2022, 31(8): 086801.
[5] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[6] Microstructural, magnetic and dielectric performance of rare earth ion (Sm3+)-doped MgCd ferrites
Dandan Wen(文丹丹), Xia Chen(陈霞), Dasen Luo(骆大森), Yi Lu(卢毅),Yixin Chen(陈一鑫), Renpu Li(黎人溥), and Wei Cui(崔巍). Chin. Phys. B, 2022, 31(7): 078503.
[7] Wet etching and passivation of GaSb-based very long wavelength infrared detectors
Xue-Yue Xu(许雪月), Jun-Kai Jiang(蒋俊锴), Wei-Qiang Chen(陈伟强), Su-Ning Cui(崔素宁), Wen-Guang Zhou(周文广), Nong Li(李农), Fa-Ran Chang(常发冉), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), Dong-Wei Jiang(蒋洞微), Dong-Hai Wu(吴东海), Hong-Yue Hao(郝宏玥), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2022, 31(6): 068503.
[8] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[9] Interface effect on superlattice quality and optical properties of InAs/GaSb type-II superlattices grown by molecular beam epitaxy
Zhaojun Liu(刘昭君), Lian-Qing Zhu(祝连庆), Xian-Tong Zheng(郑显通), Yuan Liu(柳渊), Li-Dan Lu(鹿利单), and Dong-Liang Zhang(张东亮). Chin. Phys. B, 2022, 31(12): 128503.
[10] Effect of hydrogen plasma implantation on the micro-structure and magnetic properties of hcp-Co8057Fe4Ir16 thin films
Hui Wang(王辉), Meng Wu(吴猛), Haiping Zhou(周海平), Bo Zhang(张博), Shixin Hu(胡世欣), Tianyong Ma(马天勇), Zhiwei Li(李志伟), Liang Qiao(乔亮), Tao Wang(王涛), and Fashen Li(李发伸). Chin. Phys. B, 2021, 30(5): 057505.
[11] Excellent thermoelectric performance predicted in Sb2Te with natural superlattice structure
Pei Zhang(张培), Tao Ouyang(欧阳滔), Chao Tang(唐超), Chaoyu He(何朝宇), Jin Li(李金), Chunxiao Zhang(张春小), and Jianxin Zhong(钟建新). Chin. Phys. B, 2021, 30(12): 128401.
[12] Moiré superlattice modulations in single-unit-cell FeTe films grown on NbSe2 single crystals
Han-Bin Deng(邓翰宾), Yuan Li(李渊), Zili Feng(冯子力), Jian-Yu Guan(关剑宇), Xin Yu(于鑫), Xiong Huang(黄雄), Rui-Zhe Liu(刘睿哲), Chang-Jiang Zhu(朱长江), Limin Liu(刘立民), Ying-Kai Sun(孙英开), Xi-Liang Peng(彭锡亮), Shuai-Shuai Li(李帅帅), Xin Du(杜鑫), Zheng Wang(王铮), Rui Wu(武睿), Jia-Xin Yin(殷嘉鑫), You-Guo Shi(石友国), and Han-Qing Mao(毛寒青). Chin. Phys. B, 2021, 30(12): 126801.
[13] Extended phase diagram of La1-xCaxMnO3 by interfacial engineering
Kexuan Zhang(张可璇), Lili Qu(屈莉莉), Feng Jin(金锋), Guanyin Gao(高关胤), Enda Hua(华恩达), Zixun Zhang(张子璕), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2021, 30(12): 126802.
[14] Temperature effects of GaAs/Al0.45Ga0.55As superlattices on chaotic oscillation
Xiao-Peng Luo(罗晓朋), Yan-Fei Liu(刘延飞), Dong-Dong Yang(杨东东), Cheng Chen(陈诚), Xiu-Jian Li(李修建), and Jie-Pan Ying(应杰攀). Chin. Phys. B, 2021, 30(10): 106805.
[15] Electric gating of the multichannel conduction in LaAlO3/SrTiO3 superlattices
Shao-Jin Qi(齐少锦), Xuan Sun(孙璇), Xi Yan(严曦), Hui Zhang(张慧), Hong-Rui Zhang(张洪瑞), Jin-E Zhang(张金娥), Hai-Lin Huang(黄海林), Fu-Rong Han(韩福荣), Jing-Hua Song(宋京华), Bao-Gen Shen(沈保根), and Yuan-Sha Chen(陈沅沙). Chin. Phys. B, 2021, 30(1): 017301.
No Suggested Reading articles found!