Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(7): 077103    DOI: 10.1088/1674-1056/22/7/077103
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

First-principles study on the effect of high In doping on the conductivity of ZnO

Hou Qing-Yu (侯清玉)a, Li Ji-Jun (李继军)a, Ying Chun (迎春)a, Zhao Chun-Wang (赵春旺)a, Zhao Er-Jun (赵二俊)a, Zhang Yue (张跃)b
a School of Science, Inner Mongolia University of Technology, Hohhot 010051, China;
b School of Material Science and Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100083, China
Abstract  Based on the density functional theory (DFT), using first-principles plane-wave ultrasoft pseudopotential method, the models of the unit cell of pure ZnO and two highly In-doped supercells of Zn0.9375In0.0625O and Zn0.875In0.125O are constructed, and the geometry optimizations of the three models are carried out. The total density of states (DOS) and the band structures (BS) are also calculated. The calculation results show that in the range of high doping concentration, when the doping concentration is hihger than a specific value, the conductivity decreases with the increase of the doping concentration of In in ZnO, which is in consistence with the change trend of the experimental results.
Keywords:  wurtzite ZnO      high In doping      conductivity      first principles  
Received:  26 July 2012      Revised:  02 March 2013      Accepted manuscript online: 
PACS:  71.15.-m (Methods of electronic structure calculations)  
  74.20.Pq (Electronic structure calculations)  
  72.15.-v (Electronic conduction in metals and alloys)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51261017 and 21261013), the Ministry of Education "Spring Sunshine" Plan Funding, China, the Natural Science Foundation of Inner Mongolia Autonomous Region, China (Grant No. 2011BS0104), and the College Science Research Project of Inner Mongolia Autonomous Region, China (Grant Nos. NJZY12068 and NJZZ13099).
Corresponding Authors:  Hou Qing-Yu, Li Ji-Jun     E-mail:  by0501119@126.com; lijjtom@yahoo.com.cn

Cite this article: 

Hou Qing-Yu (侯清玉), Li Ji-Jun (李继军), Ying Chun (迎春), Zhao Chun-Wang (赵春旺), Zhao Er-Jun (赵二俊), Zhang Yue (张跃) First-principles study on the effect of high In doping on the conductivity of ZnO 2013 Chin. Phys. B 22 077103

[1] Badeker K 1907 Ann. Phys. (LeiPzig) 22 749
[2] Hong C S, Park H H, Moon J and Park H H 2006 Thin Solid Films 515 957
[3] Zhou J, Fei P, Gu Y D, Mai W J, Gao Y F, Yang R S, Bao G and Wang Z L 2008 Nano Lett. 8 3973
[4] Yoshino Y, Makino T, Katayama Y and Hata T 2000 Vacuum 59 538
[5] Minami T, Nanto H and Takata S 1984 Jpn. J. Appl. Phys. 23 280
[6] Sedky A and El-Suheel E 2012 Chin. Phys. B 21 116103
[7] Gong J F, Dou Z M, Wang Z Q, Zhang B, Zhu W H, Zhang K X, Liu M Y, Zhu H and Zhou J F 2012 Chin. Phys. B 21 068101
[8] Tominaga K, Takao T, Fukushima A, Moriga T and Nakabayashi I 2002 Vacuum 66 505
[9] Bae S Y, Na CW, Kang J H and Park J 2005 J. Phys. Chem. B 109 2526
[10] Jie J S,Wang G Z, Han X H, Yu Q X, Liao Y, Li G P and Hou J G 2004 Chem. Phys. Lett. 387 466
[11] Huang Y H, Zhang Y, Gu Y S, Bai X D, Qi J J, Liao Q L and Liu J 2007 J. Phys. Chem. C 111 9039
[12] Xie F W, Li P, Zhang L Q, Zhang X L, Wang X L, Wang H and Song X F 2011 Adv. Mater. Res. 335-336 32
[13] Zhou X H, Hu Q H and Fu Y 2008 J. Appl. Phys. 104 063703
[14] Kim K J and Park Y R 2001 Appl. Phys. Lett. 78 475
[15] Li P, Deng S H, Zhang L, Zhang L, Yu J Y and Liu G H 2010 Chin. Phys. B 19 117102
[16] Ye Z Z and Tang J F 1989 Appl. Opt. 28 2817
[17] Lee J H and Park B O 2003 Thin Solid Films 426 94
[18] Liu Q, Cheng X L, Yang X D and Fan Y H 2009 Acta Phys. Sin. 58 2684 (in Chinese)
[19] Park K C, Ma D Y and Kim K H 1997 Thin Solid Films 305 201
[20] Sorescu M, Diamandescu L and Tarabsanu-Mihaila D 2004 J. Mater. Sci. 39 675
[21] Hou Q Y, Zhao C W and Jin Y J 2009 Acta Phys. Sin. 58 7136 (in Chinese)
[22] Hou Q Y, Li J J, Zhao C W, Ying C and Zhang Y 2011 Physica B 406 1956
[23] Xin J, Zheng Y Q and Shi E W 2007 J. Inorg. Mater. 22 193
[24] Schleife A, Fuchs F and Furthmüller J 2006 Phys. Rev. B 73 245212
[25] Anisimov V I, Aryasetiawan F and Lichtenstein A I 1997 J. Phys: Condens. Matter 9 767
[1] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[4] Enhanced topological superconductivity in an asymmetrical planar Josephson junction
Erhu Zhang(张二虎) and Yu Zhang(张钰). Chin. Phys. B, 2023, 32(4): 040307.
[5] Superconductivity in epitaxially grown LaVO3/KTaO3(111) heterostructures
Yuan Liu(刘源), Zhongran Liu(刘中然), Meng Zhang(张蒙), Yanqiu Sun(孙艳秋), He Tian(田鹤), and Yanwu Xie(谢燕武). Chin. Phys. B, 2023, 32(3): 037305.
[6] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[7] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[8] Superconductivity and unconventional density waves in vanadium-based kagome materials AV3Sb5
Hui Chen(陈辉), Bin Hu(胡彬), Yuhan Ye(耶郁晗), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097405.
[9] Mottness, phase string, and high-Tc superconductivity
Jing-Yu Zhao(赵靖宇) and Zheng-Yu Weng(翁征宇). Chin. Phys. B, 2022, 31(8): 087104.
[10] Evolution of electrical conductivity and semiconductor to metal transition of iron oxides at extreme conditions
Yukai Zhuang(庄毓凯) and Qingyang Hu(胡清扬). Chin. Phys. B, 2022, 31(8): 089101.
[11] Low-temperature heat transport of the zigzag spin-chain compound SrEr2O4
Liguo Chu(褚利国), Shuangkui Guang(光双魁), Haidong Zhou(周海东), Hong Zhu(朱弘), and Xuefeng Sun(孙学峰). Chin. Phys. B, 2022, 31(8): 087505.
[12] High-pressure study of topological semimetals XCd2Sb2 (X = Eu and Yb)
Chuchu Zhu(朱楚楚), Hao Su(苏豪), Erjian Cheng(程二建), Lin Guo(郭琳), Binglin Pan(泮炳霖), Yeyu Huang(黄烨煜), Jiamin Ni(倪佳敏), Yanfeng Guo(郭艳峰), Xiaofan Yang(杨小帆), and Shiyan Li(李世燕). Chin. Phys. B, 2022, 31(7): 076201.
[13] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[14] Surface electron doping induced double gap opening in Td-WTe2
Qi-Yuan Li(李启远), Yang-Yang Lv(吕洋洋), Yong-Jie Xu(徐永杰), Li Zhu(朱立), Wei-Min Zhao(赵伟民), Yanbin Chen(陈延彬), and Shao-Chun Li(李绍春). Chin. Phys. B, 2022, 31(6): 066802.
[15] Vacuum current-carrying tribological behavior of MoS2-Ti films with different conductivities
Lu-Lu Pei(裴露露), Peng-Fei Ju(鞠鹏飞), Li Ji(吉利), Hong-Xuan Li(李红轩),Xiao-Hong Liu(刘晓红), Hui-Di Zhou(周惠娣), and Jian-Min Chen(陈建敏). Chin. Phys. B, 2022, 31(6): 066201.
No Suggested Reading articles found!