Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(6): 067305    DOI: 10.1088/1674-1056/22/6/067305
Special Issue: TOPICAL REVIEW — Topological insulator
TOPICAL REVIEW—Topological insulator Prev   Next  

From magnetically doped topological insulator to the quantum anomalous Hall effect

He Ke (何珂)a, Ma Xu-Cun (马旭村)a, Chen Xi (陈曦)b, Lü Li(吕力)a, Wang Ya-Yu (王亚愚)b, Xue Qi-Kun (薛其坤)b
a Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
b State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
Abstract  Quantum Hall effect (QHE), as a class of quantum phenomena that occur in macroscopic scale, is one of the most important topics in condensed matter physics. It has long been expected that QHE may occur without Landau levels so that neither external magnetic field nor high sample mobility is required for its study and application. Such a QHE free of Landau levels, can appear in topological insulators (TIs) with ferromagnetism as the quantized version of the anomalous Hall effect, i.e., quantum anomalous Hall (QAH) effect. Here we review our recent work on experimental realization of the QAH effect in magnetically doped TIs. With molecular beam epitaxy, we prepare thin films of Cr-doped (Bi,Sb)2Te3 TIs with wellcontrolled chemical potential and long-range ferromagnetic order that can survive the insulating phase. In such thin films, we eventually observed the quantization of the Hall resistance at h/e2 at zero field, accompanied by a considerable drop in the longitudinal resistance. Under a strong magnetic field, the longitudinal resistance vanishes, whereas the Hall resistance remains at the quantized value. The realization of the QAH effect provides a foundation for many other novel quantum phenomena predicted in TIs, and opens a route to practical applications of quantum Hall physics in low-power-consumption electronics.
Keywords:  topological insulator      quantum anomalous Hall effect      quantum Hall effect      ferromagnetic insulator      molecular beam epitaxy  
Received:  16 May 2013      Accepted manuscript online: 
PACS:  73.21.Fg (Quantum wells)  
  73.43.-f (Quantum Hall effects)  
  75.50.Pp (Magnetic semiconductors)  
  75.70.-i (Magnetic properties of thin films, surfaces, and interfaces)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11174343 and 11134008), the National Basic Research Program of China (Grant Nos. 2013CB921702 and 2009CB929400), and the Knowledge Innovation Program of the Chinese Academy of Sciences.
Corresponding Authors:  Wang Ya-Yu, Xue Qi-Kun     E-mail:  kehe@iphy.ac.cn; yayuwang@mail.tsinghua.edu.cn; qkxue@mail.tsinghua.edu.cn

Cite this article: 

He Ke (何珂), Ma Xu-Cun (马旭村), Chen Xi (陈曦), Lü Li (吕力), Wang Ya-Yu (王亚愚), Xue Qi-Kun (薛其坤) From magnetically doped topological insulator to the quantum anomalous Hall effect 2013 Chin. Phys. B 22 067305

[1] Dirac P A M 1947 The Principles of Quantum Mechanics, 3rd edn.(Oxford: Oxford University Press, USA)
[2] Klitzing K V, Dorda G and Peper M 1980 Phys. Rev. Lett. 45 494
[3] Tsui D C, Stormer H L and Gossard A C 1982 Phys. Rev. Lett. 48 1559
[4] Hall E H 1879 Am. J. Math. 2 287
[5] Laughlin R B 1981 Phys. Rev. B 23 5632
[6] Thouless D J, Kohmoto M, Nightingale M P and Nijs M D 1982 Phys.Rev. Lett. 49 405
[7] Avron J E, Osadchy D and Seiler R, 2003 Phys. Today 56 38
[8] Haldane F D M 1988 Phys. Rev. Lett. 61 2015
[9] Hall E H 1881 Philo. Mag. 12 157
[10] Nagaosa N, Sinova J, Onoda S, MacDonald A H and Ong N P 2010Rev. Mod. Phys. 82 1539
[11] Onoda M and Nagaosa N 2003 Phys. Rev. Lett. 90 206601
[12] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801
[13] Bernevig B A and Zhang S C 2006 Phys. Rev. Lett. 96 106802
[14] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[15] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[16] Bernevig B A, Hughes T L and Zhang S C 2006 Science 314 1757
[17] König M, Wiedmann S, Brüne C, Roth A, Buhmann H, Molenkamp LW, Qi X L and Zhang S C 2007 Science 318 766
[18] Liu C X, Hughes T L, Qi X L,Wang K and Zhang S C 2008 Phys. Rev.Lett. 100 236601
[19] Knez I, Du R R and Sullivan G 2011 Phys. Rev. Lett. 107 136603
[20] Fu L, Kane C L and Mele E J 2007 Phys. Rev. Lett. 98 106803
[21] Fu L and Kane C L 2007 Phys. Rev. B 76 045302
[22] Hsieh D, Qian D, Wray L, Xia Y, Hor Y S, Cava R J and Hasan M Z2008 Nature 452 970
[23] Hsieh D, Xia Y, Wray L, Qian D, Pal A, Dil J H, Osterwalder J, MeierF, Bihlmayer G, Kane C L, Hor Y S, Cava R J and Hasan M Z 2009Science 323 919
[24] Zhang H J, Liu C X, Qi X L, Dai X, Fang Z and Zhang S C 2009 Nat.Phys. 5 438
[25] Xia Y, Qian D, Hsieh D, Wray L, Pal A, Lin H, Bansil A, Grauer D,Hor Y S, Cava R J and Hasan M Z 2009 Nat. Phys. 5 398
[26] Chen Y L, Analytis J G, Chu J H, Liu Z K, Mo S K, Qi X L, Zhang HJ, Lu D H, Dai X, Fang Z, Zhang S C, Fisher I R, Hussain Z and ShenZ X 2009 Science 325 178
[27] Hsieh D, Xia Y, Qian D, Wray L, Dil J H, Meier F, Osterwalder J,Patthey L, Checkelsky J G, Ong N P, Fedorov A V, Lin H, Bansil A,Grauer D, Hor Y S, Cava R J and Hasan M Z 2009 Nature 460 1101
[28] Qi X L, Wu Y S and Zhang S C 2006 Phys. Rev. B 74 085308
[29] Liu C X, Qi X L, Dai X, Fang Z and Zhang S C 2008 Phys. Rev. Lett.101 146802
[30] Qi X L, Hughes T L and Zhang S C 2008 Phys. Rev. B 78 195424
[31] Yu R, ZhangW, Zhang H J, Zhang S C, Dai X and Fang Z 2010 Science329 61
[32] Nomura K and Nagaosa N 2011 Phys. Rev. Lett. 106 166802
[33] Li Y Y, Wang G, Zhu X G, Liu M H, Ye C, Chen X, Wang Y, He K,Wang L L, Ma X C, Zhang H J, Dai X, Fang Z, Xie X C, Liu Y, Qi XL, Jia J F, Zhang S C and Xue Q K 2010 Adv. Mater. 22 4002
[34] Song C L, Wang Y L, Jiang Y P, Zhang Y, C. Chang C Z, Wang L, HeK, Chen X, Jia J F, Wang Y, Fang Z, Dai X, Xie X C, Qi X L, Zhang SC, Xue Q K and Ma X 2010 Appl. Phys. Lett. 97 143118
[35] Zhang Y, He K, Chang C Z, Song C L,Wang L L, Chen X, Jia J F, FangZ, Dai X, Shan W Y, Shen S Q, Niu Q, Qi X L, Zhang S C, Ma X C,Xue Q K 2010 Nat. Phys. 6 584
[36] Wang G, Zhu X, Wen J, Chen X, He K, Wang L L, Ma X C, Liu Y, DaiX, Fang Z, Jia J F and Xue Q K 2010 Nano Res. 3 874
[37] Dietl T, Ohno H, Matsukura F, Cibert J and Ferrand D, 2000 Science287 1019
[38] Ohno H 1998 Science 281 951
[39] Zhang J, Chang C Z, Tang P, Zhang Z, Feng X, Li K, Wang L L, ChenX, Liu C X, Duan W, He K, Xue Q K, Ma X C and Wang Y 2013Science 339 1582
[40] Chang C Z, Zhang J, Liu M, Zhang Z, Feng X, Li K, Wang L L, ChenX, Dai X, Fang Z, Qi X L, Zhang S C,Wang Y, He K, Ma X C and XueQ K 2013 Adv. Mater. 25 1065
[41] Chien Y J 2007 Ph. D. thesis of the University of Michigan, USA(http://deepblue.lib.umich.edu/handle/2027.42/57593)
[42] Hor Y S, Roushan P, Beidenkopf H, Seo J, Qu D, Checkelsky J G, WrayL A, Hsieh D, Xia Y, Xu S Y, Qian D, Hasan M Z, Ong N P, YazdaniA and Cava R J 2010 Phys. Rev. B 81 195203
[43] Wang G, Zhu X G, Sun Y Y, Li Y Y, Zhang T, Wen J, Chen X, He K,Wang L L, Ma X C, Jia J F, Zhang S B and Xue Q K 2011 Adv Mater.23 2929
[44] Jiang Y P, Sun Y Y, Chen M, Wang Y L, Li Z, Song C L, He K, WangL L, Chen X, Xue Q K, Ma X C and Zhang S B 2012 Phys. Rev. Lett.108 066809
[45] Zhang J, Chang C Z, Zhang Z, Wen J, Feng X, Li K, Liu M, He K,Wang L L, Chen X, Xue Q K, Ma X and Wang Y 2011 Nat. Commun.2 574
[46] Benia H M, Lin C, Kern K and Ast C R 2011 Phys. Rev. Lett. 107177602
[47] Chen J, Qin H J, Yang F, Liu J, Guan T, Qu F M, Zhang G H, Shi J R,Xie X C, Yang C L, Wu K H, Li Y Q and Lu L 2010 Phys. Rev. Lett.105 176602
[48] Chang C Z, Zhang J, Feng X, Shen J, Zhang Z, Guo M, Li K, Ou Y,Wei P, Wang L L, Ji Z Q, Feng Y, Ji S, Chen X, Jia J F, Dai X, Fang Z,Zhang S C, He K, Wang Y, Lu L, Ma X C and Xue Q K 2013 Science340 167
[49] Checkelsky J G, Ye J, Onose Y, Iwasa Y and Tokura Y 2012 Nat. Phys.8 729
[50] Jeckelmann B and Jeanneret B 2001 Rep. Prog. Phys. 64 1603
[1] Strain compensated type II superlattices grown by molecular beam epitaxy
Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2023, 32(4): 046802.
[2] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[3] Hall conductance of a non-Hermitian two-band system with k-dependent decay rates
Junjie Wang(王俊杰), Fude Li(李福德), and Xuexi Yi(衣学喜). Chin. Phys. B, 2023, 32(2): 020305.
[4] Electroluminescence explored internal behavior of carriers in InGaAsP single-junction solar cell
Xue-Fei Li(李雪飞), Wen-Xian Yang(杨文献), Jun-Hua Long(龙军华), Ming Tan(谭明), Shan Jin(金山), Dong-Ying Wu(吴栋颖), Yuan-Yuan Wu(吴渊渊), and Shu-Long Lu(陆书龙). Chin. Phys. B, 2023, 32(1): 017801.
[5] Selective formation of ultrathin PbSe on Ag(111)
Jing Wang(王静), Meysam Bagheri Tagani, Li Zhang(张力), Yu Xia(夏雨), Qilong Wu(吴奇龙), Bo Li(黎博), Qiwei Tian(田麒玮), Yuan Tian(田园), Long-Jing Yin(殷隆晶), Lijie Zhang(张利杰), and Zhihui Qin(秦志辉). Chin. Phys. B, 2022, 31(9): 096801.
[6] Current carrying states in the disordered quantum anomalous Hall effect
Yi-Ming Dai(戴镒明), Si-Si Wang(王思思), Yan Yu(禹言), Ji-Huan Guan(关济寰), Hui-Hui Wang(王慧慧), and Yan-Yang Zhang(张艳阳). Chin. Phys. B, 2022, 31(9): 097302.
[7] High Chern number phase in topological insulator multilayer structures: A Dirac cone model study
Yi-Xiang Wang(王义翔) and Fu-Xiang Li(李福祥). Chin. Phys. B, 2022, 31(9): 090501.
[8] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[9] Effects of phosphorus doping on the physical properties of axion insulator candidate EuIn2As2
Feihao Pan(潘斐豪), Congkuan Tian(田丛宽), Jiale Huang(黄嘉乐), Daye Xu(徐大业), Jinchen Wang (汪晋辰), Peng Cheng(程鹏), Juanjuan Liu(刘娟娟), and Hongxia Zhang(张红霞). Chin. Phys. B, 2022, 31(5): 057502.
[10] Generalization of the theory of three-dimensional quantum Hall effect of Fermi arcs in Weyl semimetal
Mingqi Chang(苌名起), Yunfeng Ge(葛云凤), and Li Sheng(盛利). Chin. Phys. B, 2022, 31(5): 057304.
[11] Entanglement spectrum of non-Abelian anyons
Ying-Hai Wu(吴英海). Chin. Phys. B, 2022, 31(3): 037302.
[12] Molecular beam epitaxy growth of quantum devices
Ke He(何珂). Chin. Phys. B, 2022, 31(12): 126804.
[13] Manipulation of intrinsic quantum anomalous Hall effect in two-dimensional MoYN2CSCl MXene
Yezhu Lv(吕叶竹), Peiji Wang(王培吉), and Changwen Zhang(张昌文). Chin. Phys. B, 2022, 31(12): 127303.
[14] Interface effect on superlattice quality and optical properties of InAs/GaSb type-II superlattices grown by molecular beam epitaxy
Zhaojun Liu(刘昭君), Lian-Qing Zhu(祝连庆), Xian-Tong Zheng(郑显通), Yuan Liu(柳渊), Li-Dan Lu(鹿利单), and Dong-Liang Zhang(张东亮). Chin. Phys. B, 2022, 31(12): 128503.
[15] Ac Josephson effect in Corbino-geometry Josephson junctions constructed on Bi2Te3 surface
Yunxiao Zhang(张云潇), Zhaozheng Lyu(吕昭征), Xiang Wang(王翔), Enna Zhuo(卓恩娜), Xiaopei Sun(孙晓培), Bing Li(李冰), Jie Shen(沈洁), Guangtong Liu(刘广同), Fanming Qu(屈凡明), and Li Lü(吕力). Chin. Phys. B, 2022, 31(10): 107402.
No Suggested Reading articles found!