Special Issue:
TOPICAL REVIEW — Magnetism, magnetic materials, and interdisciplinary research
|
TOPICAL REVIEW—Magnetism, magnetic materials, and interdisciplinary research |
Prev
Next
|
|
|
Martensitic transformation & related magnetic effects in Ni-Mn-based ferro magnetic shape memory alloys |
Wang Dun-Hui (王敦辉), Han Zhi-Da (韩志达), Xuan Hai-Cheng (轩海成), Ma Sheng-Can (马胜灿), Chen Shui-Yuan (陈水源), Zhang Cheng-Liang (张成亮), Du You-Wei (都有为) |
National Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093, China |
|
|
Abstract Ferromagnetic shape memory alloys, which undergo the martensitic transformation, are famous multifunctional materials. They exhibit many interesting magnetic properties around the martensitic transformation temperature due to the strong coupling between magnetism and structure. Tuning magnetic phase transition and optimizing the magnetic effects in these alloys are of great importance. In this paper, the regulation of martensitic transformation and the investigation of some related magnetic effects in Ni-Mn-based alloys are reviewed based on our recent research results.
|
Received: 03 May 2013
Accepted manuscript online:
|
PACS:
|
75.30.Kz
|
(Magnetic phase boundaries (including classical and quantum magnetic transitions, metamagnetism, etc.))
|
|
75.30.Sg
|
(Magnetocaloric effect, magnetic cooling)
|
|
75.50.Cc
|
(Other ferromagnetic metals and alloys)
|
|
75.47.De
|
(Giant magnetoresistance)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2012CB932304) and the National Natural Science Foundation of China (Grant No. U1232210). |
Corresponding Authors:
Wang Dun-Hui
E-mail: wangdh@nju.edu.cn
|
Cite this article:
Wang Dun-Hui (王敦辉), Han Zhi-Da (韩志达), Xuan Hai-Cheng (轩海成), Ma Sheng-Can (马胜灿), Chen Shui-Yuan (陈水源), Zhang Cheng-Liang (张成亮), Du You-Wei (都有为) Martensitic transformation & related magnetic effects in Ni-Mn-based ferro magnetic shape memory alloys 2013 Chin. Phys. B 22 077506
|
[1] |
Murray S J, Moarioni M, Allen S M, O'Handley R C and Lograsso T A 2000 Appl. Phys. Lett. 77 886
|
[2] |
Wang W H, Wu G H, Chen J L, Yu C H, Gao S X, Zhan W S, Wang Z, Gao Z Y, Zheng Y F and Zhao L C 2000 Appl. Phys. Lett. 77 3245
|
[3] |
Sozinov A, Likhachev A A, Lanska N and Ullakko K 2002 Appl. Phys. Lett. 80 1746
|
[4] |
Hu F X, Shen B G and Sun J R 2000 Appl. Phys. Lett. 76 3460
|
[5] |
Sutou Y, Imano Y, Koeda N, Omori T, Kainuma R, Ishida K and Oikawa K 2004 Appl. Phys. Lett. 85 4358
|
[6] |
Krenke T, Duman E, Acet M, Wassermann E F, Moya X, Mañosa L and Planes A 2005 Nat. Mater. 4 450
|
[7] |
Yu S Y, Liu Z H, Liu G D, Chen J L, Cao Z X, Wu G H, Zhang B and Zhang X X 2006 Appl. Phys. Lett. 89 162503
|
[8] |
Kainuma R, Imano Y, Ito W, Sutou Y, Morito H, Okamoto S, Kitakami O, Oikawa K, Fujita A, Kanomota T and Ishida K 2006 Nature 439 957
|
[9] |
Planes A, Mañosa L and Acet M 2009 J. Phys.: Condens. Matter 21 233201
|
[10] |
Mañosa L, Moya X, Planes A, Gutfleisch O, Lyubina J, Barrio M, Tamarit J L, Aksoy S, Krenke T and Acet M 2008 Appl. Phys. Lett. 92 012515
|
[11] |
Wang D H, Zhang C L, Han Z D, Xuan H C, Gu B X and Du Y W 2008 J. Appl. Phys. 103 033901
|
[12] |
Han Z D, Wang D H, Zhang C L, Xuan H C, Gu B X and Du Y W 2008 Appl. Phys. Lett. 90 042507
|
[13] |
Han Z D, Wang D H, Zhang C L, Xuan H C, Gu B X and Du Y W 2008 J. Appl. Phys. 104 053906
|
[14] |
Wang D H, Zhang C L, Xuan H C, Han Z D, Zhang J R, Tang S L, Gu B X and Du Y W 2007 J. Appl. Phys. 102 013909
|
[15] |
Han Z D, Chen X, Zhang Y, Chen J, Qian B, Jiang X F, Wang D H and Du Y W 2011 J. Alloy. Compd. 515 114
|
[16] |
Aksoy S, Krenke T, Acet M, Wassermann E F, Moya X, Mañosa L and Planes A 2007 Appl. Phys. Lett. 91 241916
|
[17] |
Han Z D, Wang D H, Zhang C L, Xuan H C, Zhang J R, Gu B X and Du Y W 2009 Mater. Sci. Eng. B 157 40
|
[18] |
Shen J, Gao B, Zhang H W, Hu F X, Li Y X, Sun J R and Shen B G 2007 Appl. Phys. Lett. 91 142503
|
[19] |
Xuan H C, Wang D H, Zhang C L, Han Z D, Gu B X and Du Y W 2008 Appl. Phys. Lett. 92 242506
|
[20] |
Nayak A K, Suresh K G, Nigam A K, Coelho A A and Gama S 2009 J. Appl. Phys. 106 053901
|
[21] |
Mandal K, Pal D, Scheerbaum N, Lyubina J and Gutfleisch O 2009 J. Appl. Phys. 105 073509
|
[22] |
Lin H C, Wu S K, Chou T S and Kao H P 1991 Acta Metall. Mater. 39 2069
|
[23] |
Piao M, Otsuka K, Miyazaki S and Horikawa H 1993 Mater. Trans. JIM 34 919
|
[24] |
Liu Y and Favier D 2000 Acta Mater. 48 3489
|
[25] |
Ma S C, Xuan H C, Zhang C L, Wang L Y, Cao Q Q, Wang D H and Du Y W 2010 Chin. Phys. B 19 117503
|
[26] |
Llamazares J L S, Sánchez T, Santos J D, Pèrez M J, Sanchez M L, Hernando B, Escoda L, Suñol J J and Varga R 2008 Appl. Phys. Lett. 92 012513
|
[27] |
Hernando B, Llamazares J L S, Santos J D, Escoda L, Suñol J J, Varga R, Baldomir D and Serantes D 2008 Appl. Phys. Lett. 92 042504
|
[28] |
Xuan H C, Xie K X, Wang D H, Han Z D, Zhang C L, Gu B X and Du Y W 2008 Appl. Phys. Lett. 92 102503
|
[29] |
Planes A, ObradóE, González-Comas A and Mañosa L 1997 Phys. Rev. Lett. 79 3926
|
[30] |
González-Comas A, ObradóE, Mañosa L, Planes A, Chernenko V A, Hattink B J and Labarta A 1999 Phys. Rev. B 60 7085
|
[31] |
Cui Y T, Chen J L, Liu G D, Wu G H and Wang W L 2004 J. Phys.: Condens. Matter 16 3061
|
[32] |
Ma S C, Xuan H C, Zhang C L, Wang L Y, Cao Q Q, Wang D H and Du Y W 2010 Appl. Phys. Lett. 97 052506
|
[33] |
Zhang Q, Cho J H, Li B, Hu W J and Zhang Z D 2009 Appl. Phys. Lett. 94 182501
|
[34] |
Rocco D L, Amaral J S, Leitão J V, Amaral V S, Reis M S, Fernandes R P, Pereira A M, Araújo J P, Martins N V, Tavares P B and Coelho A A 2009 Phys. Rev. B 79 014428
|
[35] |
XuanH C, Deng Y, Wang D H, Zhang C L, Han Z D and Du Y W 2008 J. Phys. D: Appl. Phys. 41 215002
|
[36] |
Xuan H C, Zheng Y X, Ma S C, Cao Q Q, Wang D H and Du Y W 2010 J. Appl. Phys. 108 103920
|
[37] |
Khan M, Dubenko I, Stadler S and AliN 2007 Appl. Phys. Lett. 91 072510
|
[38] |
Li Z, Jing C, Chen J P, Yuan S J, Cao S X and Zhang J C 2007 Appl. Phys. Lett. 91 112505
|
[39] |
Xuan H C, Cao Q Q, Zhang C L, Ma S C, Chen S Y, Wang D H and Du Y W 2010 Appl. Phys. Lett. 96 202502
|
[40] |
Nan C W, Bichurin M I, Dong S X, Viehland D and Srinivasan G 2008 J. Appl. Phys. 103 031101
|
[41] |
Zhao K, Chen K, Dai Y R, Wan J G and Zhu J S 2005 Appl. Phys. Lett. 87 162901
|
[42] |
Chen S Y, Ye Q Y, Miao W, Wang D H, Wan J G, Liu J M, Du Y W, Huang Z G and Zhou S Q 2010 J. Appl. Phys. 107 09
|
[43] |
Jia Y M, Or S W, Chan H L W, Zhao X Y and Luo H S 2006 Appl. Phys. Lett. 88 242902
|
[44] |
Zhou J P, Guo Y Y, Xi Z Z, Liu P, Lin S Y, Liu G and Zhang H W 2008 Appl. Phys. Lett. 93 152501
|
[45] |
Chen S Y, Wang D H, Han Z D, Zhang C L, Du Y W and Huang Z G 2009 Appl. Phys. Lett. 95 022501
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|