Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(8): 084206    DOI: 10.1088/1674-1056/19/8/084206
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Stimulated supercontinuum-radiation generation of carbon disulfide by all-trans-β-carotene fluorescence enhancement effect in liquid core optical fibre

Men Zhi-Wei(门志伟)a)b), Fang Wen-Hui(房文汇)b), Li Zuo-Wei(里佐威)b), Qu Guan-Nan(曲冠男)b),Gao Shu-Qin(高淑琴)b), Lu Guo-Hui(陆国会) b),Yang Jian-Ge(杨健戈)b)c), and Sun Cheng-Lin(孙成林)a)b)
a State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130021, China; b College of Physics, Jilin University, Changchun 130021, Chinac Air Force Aviation University, Changchun 130022, China
Abstract  We demonstrate stimulated supercontinuum-radiation of carbon disulfide (CS2) influenced by biological molecules all-trans-β-carotene in liquid core optical fibre (LCOF). By virtue of the broad fluorescence characteristics and large third-order optical nonlinearities of all-trans-β-carotene,the high-order Stokes lines of stimulated Raman scattering (SRS) and the multi-order Stokes lines of stimulated Brillouin scattering (SBS) excitated by SRS are observed at low input-laser energies. The results indicate that the fluorescence not only enhances the SRS, but also the SBS. These Stokes lines generate the SRS–SBS supercontinuum radiation (RBSR). A flat-amplitude bandwidth of 110 nm from 515nm to 625nm is observed when a frequency-doubled Nd:YAG laser at 532nm with an energy of 0.86mJ is used. This result is expected to be useful for the multi-wavelength fibre laser.
Keywords:  stimulated Raman scattering      stimulated Brillouin scattering      all-trans-β-carotene      liquid core optical fibre  
Received:  24 July 2009      Revised:  11 March 2010      Accepted manuscript online: 
PACS:  42.62.Be (Biological and medical applications)  
  42.65.Dr (Stimulated Raman scattering; CARS)  
  42.65.Es (Stimulated Brillouin and Rayleigh scattering)  
  87.64.K- (Spectroscopy)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10774057 and 10974067).

Cite this article: 

Men Zhi-Wei(门志伟), Fang Wen-Hui(房文汇), Li Zuo-Wei(里佐威), Qu Guan-Nan(曲冠男),Gao Shu-Qin(高淑琴), Lu Guo-Hui(陆国会),Yang Jian-Ge(杨健戈), and Sun Cheng-Lin(孙成林) Stimulated supercontinuum-radiation generation of carbon disulfide by all-trans-β-carotene fluorescence enhancement effect in liquid core optical fibre 2010 Chin. Phys. B 19 084206

[1] Chow J 1996 IEEE Photon. Technol. Lett. 8 60
[2] Park N 1996 IEEE Photon. Technol. Lett. 8 1459
[3] Yamashita S and Hotate K 1996 Electron. Lett. 32 1298
[4] Park K D, Min B and Kim P 2002 Opt. Lett. 27 155
[5] Ippen E P 1970 Appl. Phys. Lett. 16 303
[6] Park K D, Ryu H and Lee W K 2003 Opt. Lett. 28 1311
[7] Zamzuri A K, Md Ali M I and Ahmad A 2006 Opt. Lett. 31 918
[8] Kwok A S and Chang R K 1992 Opt. Lett. 17 1262
[9] Biswas A and Armistrony R L 1990 Opt. Lett. 15 1191
[10] Pu X Y, Yang Z and Jiang N 2003 Acta Phys. Sin. 52 2443 (in Chinese)
[11] Marder S R, Torruellas W E and Desce M B 1997 Science 276 1233
[12] Bhattacherjee A B 1998 Bulg. J. Phys. 25 166
[13] Zuo J, Li Z W and Tian Y J 2007 Acta Phys. Sin. 56 889 (in Chinese)
[14] Erokhin A I, Kovalev V I and Fazullov F S 1986 it Sov. J. Quantum Electron. 16 872
[15] Men Z W, Fang W H and Li Z W 2009 J. Raman Spectrosc. bf 40 1039
[16] Penzkofer A, Laubereau A and Kaiser W 1979 Prog. Quantum Electron. 6 55
[17] Hasi W L J, L"u Z W, Teng Y P, Liu S J, Li Q and He W M 2007 Acta Phys. Sin. 56 878 (in Chinese)
[1] Impact of amplified spontaneous emission noise on the SRS threshold of high-power fiber amplifiers
Wei Liu(刘伟), Shuai Ren(任帅), Pengfei Ma(马鹏飞), and Pu Zhou(周朴). Chin. Phys. B, 2023, 32(3): 034202.
[2] Effects of Landau damping and collision on stimulated Raman scattering with various phase-space distributions
Shanxiu Xie(谢善秀), Yong Chen(陈勇), Junchen Ye(叶俊辰), Yugu Chen(陈雨谷), Na Peng(彭娜), and Chengzhuo Xiao(肖成卓). Chin. Phys. B, 2022, 31(5): 055201.
[3] Distributed analysis of forward stimulated Brillouin scattering for acoustic impedance sensing by extraction of a 2nd-order local spectrum
Yu-Lian Yang(杨玉莲), Jia-Bing Lin(林佳兵), Li-Ming Liu(刘黎明), Xin-Hong Jia(贾新鸿), Wen-Yan Liang(梁文燕), Shi-Rong Xu(许世蓉), and Li Jiang(姜利). Chin. Phys. B, 2021, 30(8): 084205.
[4] A low-threshold multiwavelength Brillouin fiber laser with double-frequency spacing based on a small-core fiber
Lu-Lu Xu(徐路路), Ying-Ying Wang(王莹莹), Li Jiang(江丽), Pei-Long Yang(杨佩龙), Lei Zhang(张磊), and Shi-Xun Dai(戴世勋). Chin. Phys. B, 2021, 30(8): 084210.
[5] Brillouin gain spectrum characterization in Ge-doped large-mode-area fibers
Xia-Xia Niu(牛夏夏), Yi-Feng Yang(杨依枫), Zhao Quan(全昭), Chun-Lei Yu(于春雷), Qin-Ling Zhou(周秦岭), Hui Shen(沈辉), Bing He(何兵), and Jun Zhou(周军). Chin. Phys. B, 2021, 30(12): 124203.
[6] Suppression of auto-resonant stimulated Brillouin scattering in supersonic flowing plasmas by different forms of incident lasers
S S Ban(班帅帅), Q Wang(王清), Z J Liu(刘占军), C Y Zheng(郑春阳), X T He(贺贤土). Chin. Phys. B, 2020, 29(9): 095202.
[7] Polarization dependence of gain and amplified spontaneous Brillouin scattering noise analysis for fiber Brillouin amplifier
Kuan-Lin Mu(穆宽林), Jian-Ming Shang(商建明), Li-Hua Tang(唐丽华), Zheng-Kang Wang(王正康), Song Yu(喻松), Yao-Jun Qiao(乔耀军). Chin. Phys. B, 2019, 28(9): 094216.
[8] Forward-headed structure change of acetic acid-water binary system by stimulated Raman scattering
Zhe Liu(刘喆), Bo Yang(杨博), Hong-Liang Zhao(赵洪亮), Zhan-Long Li(李占龙), Zhi-Wei Men(门志伟), Xiao-Feng Wang(王晓峰), Ning Wang(王宁), Xian-Wen Cao(曹献文), Sheng-Han Wang(汪胜晗), Cheng-Lin Sun(孙成林). Chin. Phys. B, 2019, 28(9): 094206.
[9] Effect of stimulated Brillouin scattering on the gain saturation of distributed fiber Raman amplifier and its suppression by phase modulation
Zhang Yi-Chi (张一弛), Chen Wei (陈伟), Sun Shi-Lin (孙世林), Meng Zhou (孟洲). Chin. Phys. B, 2015, 24(9): 094209.
[10] Raman gains of ADP and KDP crystals
Zhou Hai-Liang (周海亮), Zhang Qing-Hua (张清华), Wang Bo (王波), Xu Xin-Guang (许心光), Wang Zheng-Ping (王正平), Sun Xun (孙洵), Zhang Fang (张芳), Zhang Li-Song (张立松), Liu Bao-An (刘宝安), Chai Xiang-Xu (柴向旭). Chin. Phys. B, 2015, 24(4): 044206.
[11] A simple model of suppressing stimulated Brillouin scattering in optical fiber with frequency-modulated laser
Hu Xiao-Yang (胡晓阳), Chen Wei (陈伟), Tu Xiao-Bo (涂晓波), Meng Zhou (孟洲). Chin. Phys. B, 2014, 23(12): 124208.
[12] Effect of water temperature on pulse duration and energy of stimulated Brillouin scattering
Zhang Lei (张磊), Zhang Dong (张东), Li Jin-Zeng (李金增). Chin. Phys. B, 2013, 22(7): 074207.
[13] A new method for measuring the threshold of stimulated Brillouin scattering
Zhu Xue-Hua(朱学华), LŰ Zhi-Wei(吕志伟) and Wang Yu-Lei(王雨雷) . Chin. Phys. B, 2012, 21(7): 074205.
[14] Analytical model of signal amplification in silicon waveguides
Meng Fan(孟凡), Yu Chong-Xiu(余重秀), and Yuan Jin-Hui(苑金辉) . Chin. Phys. B, 2012, 21(7): 074207.
[15] Nonlinear performances of dual-pump amplifiers in silicon waveguides
Meng Fan(孟凡), Yu Chong-Xiu(余重秀), Deng Yun-Yi(邓云逸), and Yuan Jin-Hui(苑金辉) . Chin. Phys. B, 2012, 21(4): 044202.
No Suggested Reading articles found!