CLASSICAL AREAS OF PHENOMENOLOGY |
Prev
Next
|
|
|
The 260-W coherent beam combining of two compact fibre amplifier chains |
Wang Xiao-Lin(王小林)a)†, Ma Yan-Xing(马阎星) a), Zhou Pu(周朴)a), He Bing(何兵)b), Xue Yu-Hao(薛宇豪)b), Liu Chi(刘驰)b), Li Zhen(李震)b), Xiao Hu(肖虎) a), Xu Xiao-Jun(许晓军)a), Zhou Jun(周军)b), Liu Ze-Jin(刘泽金)a), and Zhao Yi-Jun(赵伊君)a) |
a College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073, China; b Shanghai Institute of Optics and Fine Mechanics, Shanghai 201800, China |
|
|
Abstract Coherent beam combining of two fibre amplifier chains with a total power of 260 W in a compact system using the stochastic parallel gradient descent (SPGD) algorithm is demonstrated. A 150 MHz linewidth fibre laser is built and introduced for high-power amplification to mitigate stimulated Brillouin scattering (SBS). Compact high-power amplifier chains are built with low power all-fibre system and high-power bulk free-optics fibre amplifiers. When the total power is about 260 W, active phase-locking of two high-power amplifiers is demonstrated using the SPGD algorithm. In closed-loop, the power in the main lobe increases 1.68 times, the visibility is increased from 0 to 0.62, and the phase residual error is less than $\lambda$/10.
|
Received: 21 February 2011
Revised: 11 June 2011
Accepted manuscript online:
|
PACS:
|
42.25.Kb
|
(Coherence)
|
|
42.55.Wd
|
(Fiber lasers)
|
|
42.65.Es
|
(Stimulated Brillouin and Rayleigh scattering)
|
|
Fund: Project supported by the Innovation Foundation for Graduates in National University of Defense Technology, China (Grant
No. B080702). |
Cite this article:
Wang Xiao-Lin(王小林), Ma Yan-Xing(马阎星), Zhou Pu(周朴), He Bing(何兵), Xue Yu-Hao(薛宇豪), Liu Chi(刘驰), Li Zhen(李震), Xiao Hu(肖虎), Xu Xiao-Jun(许晓军), Zhou Jun(周军), Liu Ze-Jin(刘泽金), and Zhao Yi-Jun(赵伊君) The 260-W coherent beam combining of two compact fibre amplifier chains 2011 Chin. Phys. B 20 114203
|
[1] |
He B, Lou Q, Zhou J, Dong J, Wei Y, Xue D, Qi Y, Su Z, Li L and Zhang F 2006 Opt. Express 14 2721
|
[2] |
Peng Q, Sun Z, Chen Y, Guo L, Bo Y, Yang X and Xu Z 2005 Opt. Lett. 30 1485
|
[3] |
Li J F, Duan K L, Wang Y S, Zhao W and Guo Y K 2008 IEEE Photon. Tech. Lett. 20 888
|
[4] |
Shay T M, Benham V, Bake J T, Sanchez A D, Pilkington D and Lu A C A 2007 IEEE J. Sel. Top. Quantum Electron. 13 480
|
[5] |
Wang X L, Zhou P, Ma Y X, Ma H T, Xu X J, Liu Z J and Zhao Y J 2010 Acta Phys. Sin. 59 5474 (in Chinese)
|
[6] |
Zhou Pu, Ma Y X, Wang X L, Ma H T, Xu X J and Liu Z J 2010 Chin. Phys. B 19 024207
|
[7] |
Liu L, Vorontsov M A, Polnau E P, Weyrauch T and Leonid A B 2007 Proc. SPIE 6708 67080K
|
[8] |
Wang X L, Zhou P, Ma Y X, Ma H T, Xu X J, Liu Z J and Zhao Y J 2010 Chin. Phy. B 19 094202
|
[9] |
Goodno G D, Mcnaught S J, Rothenberg J E, Mccomb T S, Thielen P A, Wickham M G and Weber M E 2010 Opt. Lett. 35 1542
|
[10] |
Limpert J, Röser F, Klingebiel S, Schreiber T, Wirth C, Peschel T, Eberhardt R and Tünnermann A 2007 IEEE J. Sel. Top. Quantum Electron. 13 537
|
[11] |
Jeong Y, Nilsson J, Sahu J K, Payne D N, Horley R, Hickey L M B and Turner P W 2007 IEEE J. Sel. Top. Quantum Electron. 13 546
|
[12] |
Dawson J W, Messerly M J, Beach R J, Shverdin M Y, Stappaerts E A, Sridharan A K, Pax P H, Heebner J E, Siders C W and Barty C P J 2008 Opt. Express 16 13240
|
[13] |
Bellanger C, Paurisse M, Brignon A, Colineau J, Huignard J P, Hanna M, Druon F and Georges P 2010 Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS) p. 1
|
[14] |
Goodno G D, Asman C P, Anderegg J, Brosnan S, Cheung E C, Hammo D, Injeyan H, Komine H, Long W H, Jr Mcclellan M, Mcnau S J, Redmond S, Simpson R, Sollee J, Weber M, Weiss S B and Wickham M 2007 IEEE J. Sel. Top. Quantum Electron. 13 460
|
[15] |
Jolivet V, Bourdon P, Bennai B, Lombard L, Goular D, Pourtal E, Canat G, Jaouen Y, Moreau B and Vasseur O 2009 IEEE J. Sel. Top. Quantum Electron. 15 257
|
[16] |
Shay T M, Benham V, Baker J T, Sanchez A D, Pilkington D and Lu C A 2007 IEEE J. Sel. Top. Quantum Electron. 13 480
|
[17] |
Vorontsov M A, Weyrauch T, Beresnev L A, Carhart G W, Liu L and Aschenbach K 2009 IEEE Journal of Selected Topics in Quantum Electronics 15 269
|
[18] |
Zhou P, Liu Z J, Wang X L, Ma Y X, Ma H T, Xu X J and Guo S F 2009 IEEE J. Sel. Top. Quantum Electron. 15 248
|
[19] |
Vorontsov M 2005 Proc. SPIE 5895 589501
|
[20] |
Zhou P, Ma Y X, Wang X L, Ma H T, Wang J H, Xu X J and Liu Z J 2009 Appl. Opt. 48 6537
|
[21] |
Zhou P, Wang X, Ma Y, Ma H and Liu Z 2010 Opt. Lett. 35 950
|
[22] |
Wang X L, Ma Y X, Zhou P, Ma H T, Li X, Xu X J and Liu Z J 2009 Laser Phys. 19 984
|
[23] |
Lombard L, Azarian A, Cadoret K, Bourdon P, Goular D, Canat G, Jolivet V, Jaou"en Y and Vasseur A O 2011 Opt. Lett. 36 523
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|