Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(3): 034212    DOI: 10.1088/1674-1056/21/3/034212
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Stimulated Brillouin scattering-induced phase noise in an interferometric fiber sensing system

Chen Wei(陈伟), Meng Zhou(孟洲), Zhou Hui-Juan(周会娟), and Luo Hong(罗洪)
Department of Optic Information Science and Technology, College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073, China
Abstract  Stimulated Brillouin scattering-induced phase noise is harmful to interferometric fiber sensing systems. The localized fluctuating model is used to study the intensity noise caused by the stimulated Brillouin scattering in a single-mode fiber. The phase noise structure is analyzed for an interferometric fiber sensing system, and an unbalanced Michelson interferometer with an optical path difference of 1 m, as well as the phase-generated carrier technique, is used to measure the phase noise. It is found that the phase noise is small when the input power is below the stimulated Brillouin scattering threshold, increases dramatically at first and then gradually becomes flat when the input power is above the threshold, which is similar to the variation in relative intensity noise. It can be inferred that the increase in phase noise is mainly due to the broadening of the laser linewidth caused by stimulated Brillouin scattering, which is verified through linewidth measurements in the absence and presence of the stimulated Brillouin scattering.
Keywords:  stimulated Brillouin scattering      phase noise      interferometric fiber sensing      intensity noise  
Received:  01 September 2011      Revised:  13 September 2011      Accepted manuscript online: 
PACS:  42.65.Es (Stimulated Brillouin and Rayleigh scattering)  
  78.35.+c (Brillouin and Rayleigh scattering; other light scattering)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61177073), the Open Fund of Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Jinan University, China (Grant No. gdol201101), the Fund of Innovation of Graduate School of NUDT, China (Grant No. B110703), and Hunan Provincial Innovation Foundation for Postgraduate, China (Grant No. CX2011B033).
Corresponding Authors:  Meng Zhou,zhoumeng6806@163.com     E-mail:  zhoumeng6806@163.com

Cite this article: 

Chen Wei(陈伟), Meng Zhou(孟洲), Zhou Hui-Juan(周会娟), and Luo Hong(罗洪) Stimulated Brillouin scattering-induced phase noise in an interferometric fiber sensing system 2012 Chin. Phys. B 21 034212

[1] Crickmore R I, Cranch G A, Kirkendall C K, Daley K, Motley S, Bautista A, Salzano J and Nash P 2003 IEEE Photon. Technol. Lett. 10 1579
[2] Bucholtz F, Villarruel C A, Dagenais D M, Mcvicker J A, Koo K P, Kirkendall C K, Davis A R, Patrick S P and Dandridge A 1994 Proc. SPIE 2292 2
[3] Vohra S T, Danver B, Tveten A and Dandridge A 1997 Electron. Lett. 33 155
[4] Wang S H, Ren L Y and Liu Y 2009 Acta Phys. Sin. 58 3943 (in Chinese)
[5] Zhao L J 2010 Acta Phys. Sin. 59 6219 (in Chinese)
[6] Chen X D, Shi J W, Liu J, Liu B, Xu Y X, Shi J L and Liu D H 2010 Acta Phys. Sin. 59 1047 (in Chinese)
[7] Agrawal G P 2001 Nonlinear Fiber Optics (San Diego: Academic Press)
[8] Boyd R W, Rzazewski K and Narum P 1990 Phys. Rev. A 42 5514
[9] Gaeta A L and Boyd R W 1991 Phys. Rev. A 44 3205
[10] Wang Z F, Hu Y M, Meng Z and Ni M 2008 Appl. Opt. 47 3524
[11] Meng Z, Hu Y M, Xiong S D, Stewart G, Whitenett G and Culshaw B 2005 Appl. Opt. 44 3425
[12] Dandridge A, Tveten A B and Giallorenzi T G 1982 IEEE J. Quantum Electron. 18 1647
[13] Chen W and Meng Z 2011 Proc. SPIE 7753 77532G
[14] Shimizu T, Nakajima K, Shiraki K, Ieda K and Sankawa I 2008 Opt. Fiber Technol. 14 10
[15] Aoki Y, Tajima K and Mito I 1988 IEEE J. Lightw. Technol. 6 710
[16] Gordon J P and Mollenauer L F 1990 Opt. Lett. 15 1351
[17] Peng X, Ma X, Zhang S, Ren G and Liu T 2011 Chinese J. Lasers 38 0408002 (in Chinese)
[18] Okoshi T, Kikuchi K and Nakayama A 1980 Electron. Lett. 16 630
[19] Iiyama K, Hayashi K, Ida Y and Tabata S 1989 Electron. Lett. 25 1589
[20] Davis M A 1997 Stimulated Brillouin Scattering in Single-Mode Optical Fiber (Ph.D. Thesis) (Virginia: University of Virginia) p. 36
[21] Chen W and Meng Z 2010 Chin. Opt. Lett. 8 1124
[22] Chen W and Meng Z 2011 Chinese J. Lasers 38 0305002 (in Chinese)
[23] Chen W and Meng Z 2011 J. Phys. B At. Mol. Opt. 44 165402
[1] Distributed analysis of forward stimulated Brillouin scattering for acoustic impedance sensing by extraction of a 2nd-order local spectrum
Yu-Lian Yang(杨玉莲), Jia-Bing Lin(林佳兵), Li-Ming Liu(刘黎明), Xin-Hong Jia(贾新鸿), Wen-Yan Liang(梁文燕), Shi-Rong Xu(许世蓉), and Li Jiang(姜利). Chin. Phys. B, 2021, 30(8): 084205.
[2] A low-threshold multiwavelength Brillouin fiber laser with double-frequency spacing based on a small-core fiber
Lu-Lu Xu(徐路路), Ying-Ying Wang(王莹莹), Li Jiang(江丽), Pei-Long Yang(杨佩龙), Lei Zhang(张磊), and Shi-Xun Dai(戴世勋). Chin. Phys. B, 2021, 30(8): 084210.
[3] Brillouin gain spectrum characterization in Ge-doped large-mode-area fibers
Xia-Xia Niu(牛夏夏), Yi-Feng Yang(杨依枫), Zhao Quan(全昭), Chun-Lei Yu(于春雷), Qin-Ling Zhou(周秦岭), Hui Shen(沈辉), Bing He(何兵), and Jun Zhou(周军). Chin. Phys. B, 2021, 30(12): 124203.
[4] Suppression of auto-resonant stimulated Brillouin scattering in supersonic flowing plasmas by different forms of incident lasers
S S Ban(班帅帅), Q Wang(王清), Z J Liu(刘占军), C Y Zheng(郑春阳), X T He(贺贤土). Chin. Phys. B, 2020, 29(9): 095202.
[5] Polarization dependence of gain and amplified spontaneous Brillouin scattering noise analysis for fiber Brillouin amplifier
Kuan-Lin Mu(穆宽林), Jian-Ming Shang(商建明), Li-Hua Tang(唐丽华), Zheng-Kang Wang(王正康), Song Yu(喻松), Yao-Jun Qiao(乔耀军). Chin. Phys. B, 2019, 28(9): 094216.
[6] Monolithic CEO-stabilization scheme-based frequency comb from an octave-spanning laser
Zi-Jiao Yu(于子蛟), Hai-Nian Han(韩海年), Yang Xie(谢阳), Hao Teng(滕浩), Zhao-Hua Wang(王兆华), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2016, 25(4): 044205.
[7] Modeling and experimental studies of a side band power re-injection locked magnetron
Wen-Jun Ye(叶文军), Yi Zhang(张益), Ping Yuan(袁萍), Hua-Cheng Zhu(朱铧丞), Ka-Ma Huang(黄卡玛), Yang Yang(杨阳). Chin. Phys. B, 2016, 25(12): 128402.
[8] Effect of stimulated Brillouin scattering on the gain saturation of distributed fiber Raman amplifier and its suppression by phase modulation
Zhang Yi-Chi (张一弛), Chen Wei (陈伟), Sun Shi-Lin (孙世林), Meng Zhou (孟洲). Chin. Phys. B, 2015, 24(9): 094209.
[9] Investigation on the intensity noise characteristics of the semiconductor ring laser
Kang Ze-Xin (康泽新), Cai Xin-Lun (蔡鑫伦), Wen Xiao-Dong (温晓东), Liu Chao (刘超), Jian Shui-Sheng (简水生), Yu Si-Yuan (余思远). Chin. Phys. B, 2014, 23(2): 024203.
[10] A simple model of suppressing stimulated Brillouin scattering in optical fiber with frequency-modulated laser
Hu Xiao-Yang (胡晓阳), Chen Wei (陈伟), Tu Xiao-Bo (涂晓波), Meng Zhou (孟洲). Chin. Phys. B, 2014, 23(12): 124208.
[11] Effect of water temperature on pulse duration and energy of stimulated Brillouin scattering
Zhang Lei (张磊), Zhang Dong (张东), Li Jin-Zeng (李金增). Chin. Phys. B, 2013, 22(7): 074207.
[12] A new method for measuring the threshold of stimulated Brillouin scattering
Zhu Xue-Hua(朱学华), LŰ Zhi-Wei(吕志伟) and Wang Yu-Lei(王雨雷) . Chin. Phys. B, 2012, 21(7): 074205.
[13] Optimization of regenerator based on semiconductor optical amplifier for degraded differential phase shift keying signal
Ma Yong-Xin(马永欣), Xi Li-Xia(席丽霞), Chen Guang(陈光), and Zhang Xiao-Guang(张晓光) . Chin. Phys. B, 2012, 21(6): 064222.
[14] Numerical simulation of four-wave mixing efficiency and its induced relative intensity noise
Chen Wei(陈伟), Meng Zhou(孟洲), Zhou Hui-Juan(周会娟), and Luo Hong(罗洪) . Chin. Phys. B, 2012, 21(6): 067802.
[15] A 168-W high-power single-frequency amplifier in an all-fiber configuration
Xiao Hu(肖虎), Dong Xiao-Lin(董小林), Zhou Pu(周朴), Xu Xiao-Jun(许晓军), and Zhao Guo-Min(赵国民) . Chin. Phys. B, 2012, 21(3): 034207.
No Suggested Reading articles found!