Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(7): 074208    DOI: 10.1088/1674-1056/22/7/074208
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Broadband tunable optical amplification based on modulation instability characteristic of high-birefringence photonic crystal fibers

Wang He-Lin (王河林)a, Yang Ai-Jun (杨爱军)a, Leng Yu-Xin (冷雨欣)b
a College of Science, Zhejiang University of Technology, Hangzhou 310023, China;
b State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
Abstract  A novel high-birefringence photonic crystal fiber (HB-PCF) with two zero-dispersion wavelengths (ZDWs) is designed, and an extraordinarily high modal birefringence of 1.56×10-2 is obtained at pump wavelength λp=1850 nm. With the designed HB-PCF, the effect of the pump parameters on the modulation instability (MI) in the anomalous dispersion region close to the second ZDWs of the HB-PCF is comprehensively studied in this work. A broadband and tunable optical amplification is achieved by controlling the pump power and the pump wavelength based on the combined operation of Raman effect and cross phase modulation. By optimizing the pump parameters, the amplification bandwidth along the fiber slow axis reaches 152 nm for the pump power Pp=280 W and the pump wavelength λp=1675 nm, while the gain bandwidth along the fiber fast axis is 165 nm for the pump power Pp=600 W and the pump wavelength λp=1818 nm.
Keywords:  modulation instability      broadband amplification      high-birefringence fiber  
Received:  17 October 2012      Revised:  08 January 2013      Accepted manuscript online: 
PACS:  42.65.Sf (Dynamics of nonlinear optical systems; optical instabilities, optical chaos and complexity, and optical spatio-temporal dynamics)  
  42.65.Wi (Nonlinear waveguides)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11226148), the Scientific Research Foundation of Zhejiang Province, China (Grant No. LY12F05006), and the Education Department Foundation of Zhejiang Province, China (Grant No. Y201121906).
Corresponding Authors:  Wang He-Lin     E-mail:  whl982032@163.com

Cite this article: 

Wang He-Lin (王河林), Yang Ai-Jun (杨爱军), Leng Yu-Xin (冷雨欣) Broadband tunable optical amplification based on modulation instability characteristic of high-birefringence photonic crystal fibers 2013 Chin. Phys. B 22 074208

[1] Xiang A P and Zhong X Q 2010 Chin. Phys. Lett. 27 014203
[2] Wu L and Zhang J F 2007 Chin. Phys. Lett. 24 1471
[3] Wen S C, Su W H and Zhang H 2003 Chin. Phys. Lett. 20 852
[4] Harvey J D, Leonhardt R, Coen S, Wong G K L, Knight J C, Wadsworth W J and Russell P S J 2003 Opt. Lett. 28 2225
[5] Wadsworth W, Joly N, Knight J, Birks T, Biancalana F and Russell P 2004 Opt. Express 12 299
[6] Akheelesh A K, Headley C and Jorgensen C G 2004 Opt. Lett. 29 2163
[7] Tai K, Hasegawa A and Tomita A 1986 Phys. Rev. Lett. 56 135
[8] Wen S C and Fan D Y 2002 J. Opt. Soc. Am. B 19 1653
[9] Agrawal G P 1987 Phys. Rev. Lett. 59 880
[10] Marhic M E, Kagi N, Chiang T K and Kazovsky L G 1996 Opt. Lett. 21 573
[11] Zhang A and Demokan M S 2004 Opt. Lett. 30 2375
[12] Wang Y, Zhang W, Wang Q, Feng X, Liu X M and Peng J D 2004 Opt. Lett. 29 842
[13] Matos C J S, Taylor J R and Hansen K P 2004 Opt. Lett. 29 983
[14] Chen J S Y, Wong G K L, Murdoch S G, Kruhlak R J, Leonhardt R and Harvey J D 2006 Opt. Lett. 31 873
[15] Hilligsöe K M, Andersen T, Paulsen H, Nielsen C, Mölmer K, Keiding S, Kristiansen R, Hansen K and Larsen J 2004 Opt. Express 12 1045
[16] Genty G, Lehtonen M and Ludvigsen H 2004 Opt. Express 12 4614
[17] Ivanov A A, Alfimov M V and Zheltikov A M 2007 Laser Phys. Lett. 4 775
[18] Martins E R, Spadoti D H, Romero M A and Borges B H V 2007 Opt. Express 15 14335
[19] Lin Q and Agrawal G P 2006 Opt. Lett. 31 3086
[20] Dudley J M, Gutty F, Pitois S and Millot G 2001 IEEE J. Quantum Electron 37 587
[21] Zhu Z M and Brown T G 2002 Opt. Express 10 853
[22] Wang H L, Leng Y X and Xu Z Z 2009 Chin. Phys. B 18 5375
[1] Pressure dependent modulation instability in photonic crystal fiber filled with argon gas
He-Lin Wang(王河林), Ai-Jun Yang(杨爱军), XiaoLong Wang(王肖隆), Bin Wu(吴彬), Yi Ruan(阮乂). Chin. Phys. B, 2018, 27(9): 094221.
[2] Controllable optical superregular breathers in the femtosecond regime
Yang Ren(任杨), Zhan-Ying Yang(杨战营), Chong Liu(刘冲), Wen-Li Yang(杨文力). Chin. Phys. B, 2018, 27(1): 010504.
[3] Optical pulse evolution in the presence of a probe light in CW-pumped nonlinear fiber
Wei Chen(陈伟), Xue-Liang Zhang(张学亮), Xiao-Yang Hu(胡晓阳), Zhang-Qi Song(宋章启), Zhou Meng(孟洲). Chin. Phys. B, 2017, 26(6): 064206.
[4] Ultra-broadband modulation instability gain characteristics in As2S3 and As2Se3 chalcogenide glass photonic crystal fiber
He-Lin Wang(王河林), Bin Wu(吴彬), Xiao-Long Wang(王肖隆). Chin. Phys. B, 2016, 25(6): 064207.
[5] Modulation instabilities in randomly birefringent two-mode optical fibers
Jin-Hua Li(李金花), Hai-Dong Ren(任海东), Shi-Xin Pei(裴世鑫), Zhao-Lou Cao(曹兆楼), Feng-Lin Xian(咸冯林). Chin. Phys. B, 2016, 25(12): 124208.
[6] Picosecond supercontinuum generation seeded by a weak continuous wave
Li Ying (李荧), Hou Jing (侯静), Leng Jin-Yong (冷进勇), Wang Wen-Liang (王文亮), Jiang Zong-Fu (姜宗福). Chin. Phys. B, 2013, 22(7): 074205.
[7] Impacts of higher-order dispersions and saturable nonlinearities on modulation instability in negative-refractive metamaterials
Zhong Xian-Qiong (钟先琼), Cheng Ke (程科), Xiang An-Ping (向安平). Chin. Phys. B, 2013, 22(3): 034205.
[8] Phase-matching analysis of four-wave mixing induced by modulation instability in a single-mode fiber
Chen Wei (陈伟), Meng Zhou (孟洲), Zhou Hui-Juan (周会娟). Chin. Phys. B, 2012, 21(9): 094215.
[9] Cross-phase modulation instability in optical fibres with exponential saturable nonlinearity and high-order dispersion
Zhong Xian-Qiong(钟先琼) and Xiang An-Ping(向安平). Chin. Phys. B, 2010, 19(6): 064212.
[10] Optimization control of modulation-instability gain in photonic crystal fibres with two-zero dispersion wavelengths
Wang He-Lin(王河林), Leng Yu-Xin(冷雨欣), and Xu Zhi-Zhan(徐至展). Chin. Phys. B, 2009, 18(12): 5375-5384.
[11] Polarization dependent dispersion and its impact on optical parametric process in high nonlinear microstructure fibre
Xiao Li(肖礼), Zhang Wei(张巍), Huang Yi-Dong(黄翊东), and Peng Jiang-De(彭江得). Chin. Phys. B, 2008, 17(3): 995-999.
[12] Density cavities generated by plasma--field interactions in the far wake region of a space vehicle
Hu Tao-Ping(胡涛平), Luo Qing(罗青), and Li Xiao-Qing(李晓卿). Chin. Phys. B, 2007, 16(8): 2449-2454.
[13] Effects of walk-off on cross-phase modulation induced modulation instability in an optical fibre with high-order dispersion
Zhong Xian-Qiong(钟先琼) and Xiang An-Ping(向安平). Chin. Phys. B, 2007, 16(6): 1683-1688.
[14] Laser pulse modulation instabilities in partially stripped plasma
Hu Qiang-Lin (胡强林), Liu Shi-Bing (刘世炳), Jiang Yi-Jian (蒋毅坚). Chin. Phys. B, 2005, 14(12): 2546-2551.
[15] Modulation instability of quasi-plane-wave optical beams in biased photorefractive-photovoltaic crystals
Lu Ke-Qing (卢克清), Zhao Wei (赵卫), Yang Yan-Long (杨延龙), Zhu Xiang-Ping (朱香平), Li Jin-Ping (李金萍), Zhang Yan-Peng (张颜鹏). Chin. Phys. B, 2004, 13(12): 2077-2081.
No Suggested Reading articles found!