Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(6): 068502    DOI: 10.1088/1674-1056/22/6/068502
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Hardening measures for bipolar transistor against microwave-induced damage

Chai Chang-Chun (柴常春), Ma Zhen-Yang (马振洋), Ren Xing-Rong (任兴荣), Yang Yin-Tang (杨银堂), Zhao Ying-Bo (赵颖博), Yu Xin Hai (于新海)
School of Microelectronics, Key Laboratory of Ministry of Education for Wide Band-Gap Semiconductor Materials and Devices, Xidian University, Xi'an 710071, China
Abstract  In the present paper we study the influences of the bias voltage and the external components on the damage progress of a bipolar transistor induced by high power microwave (HPM). The mechanism is presented by analyzing the variation of device internal distribution of the temperature. The findings show that the device becomes less vulnerable to damage with the increase of bias voltage. Both the series diode at the base and the relatively low series resistance at the emitter Re can make the burnout time of the device prolonged obviously. However, Re will aid the damage of the device when the value is sufficiently high due to the fact that the highest hot spot shifts from the base-emitter junction to the base region. Moreover, the series resistance at the base Rb will weaken the capability of the device to withstand microwave damage.
Keywords:  bipolar transistor      high power microwave      hardening measures  
Received:  23 September 2012      Revised:  30 November 2012      Accepted manuscript online: 
PACS:  85.30.Pq (Bipolar transistors)  
  84.40.-x (Radiowave and microwave (including millimeter wave) technology)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 60776034).
Corresponding Authors:  Ma Zhen-Yang     E-mail:  zyma@mail.xidian.edu.cn

Cite this article: 

Chai Chang-Chun (柴常春), Ma Zhen-Yang (马振洋), Ren Xing-Rong (任兴荣), Yang Yin-Tang (杨银堂), Zhao Ying-Bo (赵颖博), Yu Xin Hai (于新海) Hardening measures for bipolar transistor against microwave-induced damage 2013 Chin. Phys. B 22 068502

[1] Palisek L and Suchy L 2011 Proceedings of EMC Europe 2011 York - 10th International Symposium on Electromagnetic Compatibility September 26-30, 2011 York, United Kingdom, p. 18
[2] Ren Z, Yin W Y, Shi Y B and Liu Q H 2010 IEEE Trans. Electron Dev. 57 345
[3] Kim K and Iliadis A A 2010 Solid-State Electron. 54 18
[4] Iliadis A A and Kyechong K 2010 IEEE Trans. Dev. Mater. Reliab. 10 347
[5] Wang H Y, Li J Y, Zhou Y H, Hu B and Yu X Y 2009 Electromagnetics 29 393
[6] Kanyou Nana R, Korte S, Dickmann S, Garbe H and Sabath F 2009 Adv. Radio Sci. 7 249
[7] Wang H, Li J, Li H, Xiao K and Chen H 2008 Prog. Electromagn. Res. 87 313
[8] Mansson D, Thottappillil R, Nilsson T, Lunden O and Backstrom M 2008 IEEE Trans. Electromagn. Compat. 50 434
[9] Mansson D, Hottappillil R, Backstrom M and Lunden O 2008 IEEE Trans. Electromagn. Compat. 50 101
[10] Chai C C, Xi X W, Ren X R, Yang Y T and Ma Z Y 2010 Acta Phys. Sin. 59 8118 (in Chinese)
[11] Baker G, Castillo J P and Vance E F 1992 IEEE Trans. Electromagn. Compat. 34 267
[12] Brauer F, Fahlbusch S, Haseborg J L and Potthast S 2012 IEEE Trans. Electromagn. Compat. 54 1055
[13] Ma Z Y, Chai C C, Ren X R, Yang Y T and Chen B 2012 Acta Phys. Sin. 61 078501 (in Chinese)
[14] Ma Z Y, Chai C C, Ren X R, Yang Y T, Chen B and Zhao Y B 2012 Chin. Phys. B 21 058502
[15] Ma Z Y, Chai C C, Ren X R, Yang Y T, Chen B, Song K and Zhao Y B 2012 Chin. Phys. B 21 098502
[16] Ma Z Y, Chai C C, Ren X R, Yang Y T, Zhao Y B and Qiao L P 2013 Chin. Phys. B 22 028502
[17] Radasky W A 2010 Asia-Pacific Symposium on Electromagnetic Compatibility April 12-16, Beijing, China, p. 758
[18] Integrated Systems Engineering Corp. 2004 ISE-TCAD Dessis Simulation User's Manual, Zurich, Switzerland, 2004 p. 208
[1] SiC gate-controlled bipolar field effect composite transistor with polysilicon region for improving on-state current
Baoxing Duan(段宝兴), Kaishun Luo(罗开顺), and Yintang Yang(杨银堂). Chin. Phys. B, 2023, 32(4): 047702.
[2] A 4H-SiC trench IGBT with controllable hole-extracting path for low loss
Lijuan Wu(吴丽娟), Heng Liu(刘恒), Xuanting Song(宋宣廷), Xing Chen(陈星), Jinsheng Zeng(曾金胜), Tao Qiu(邱滔), and Banghui Zhang(张帮会). Chin. Phys. B, 2023, 32(4): 048503.
[3] High performance carrier stored trench bipolar transistor with dual shielding structure
Jin-Ping Zhang(张金平), Hao-Nan Deng(邓浩楠), Rong-Rong Zhu(朱镕镕), Ze-Hong Li(李泽宏), and Bo Zhang(张波). Chin. Phys. B, 2023, 32(3): 038501.
[4] Angular dependence of proton-induced single event transient in silicon-germanium heterojunction bipolar transistors
Jianan Wei(魏佳男), Yang Li(李洋), Wenlong Liao(廖文龙), Fang Liu(刘方), Yonghong Li(李永宏), Jiancheng Liu(刘建成), Chaohui He(贺朝会), and Gang Guo(郭刚). Chin. Phys. B, 2022, 31(8): 086106.
[5] An electromagnetic simulation assisted small signal modeling method for InP double-heterojunction bipolar transistors
Yanzhe Wang(王彦喆), Wuchang Ding(丁武昌), Yongbo Su(苏永波), Feng Yang(杨枫),Jianjun Ding(丁建君), Fugui Zhou(周福贵), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(6): 068502.
[6] Fast-switching SOI-LIGBT with compound dielectric buried layer and assistant-depletion trench
Chunzao Wang(王春早), Baoxing Duan(段宝兴), Licheng Sun(孙李诚), and Yintang Yang(杨银堂). Chin. Phys. B, 2022, 31(4): 047304.
[7] C band microwave damage characteristics of pseudomorphic high electron mobility transistor
Qi-Wei Li(李奇威), Jing Sun(孙静), Fu-Xing Li(李福星), Chang-Chun Chai(柴常春), Jun Ding(丁君), and Jin-Yong Fang(方进勇). Chin. Phys. B, 2021, 30(9): 098502.
[8] Snapback-free shorted anode LIGBT with controlled anode barrier and resistance
Shun Li(李顺), Jin-Sha Zhang(张金沙), Wei-Zhong Chen(陈伟中), Yao Huang(黄垚), Li-Jun He(贺利军), and Yi Huang(黄义). Chin. Phys. B, 2021, 30(2): 028501.
[9] A compact dual-band radiation system
Yuan-Qiang Yu(于元强), Yu-Wei Fan(樊玉伟), and Xiao-Yu Wang(王晓玉)$. Chin. Phys. B, 2020, 29(11): 118402.
[10] Modes decomposition in particle-in-cell software CEMPIC
Aiping Fang(方爱平)†, Shanshan Liang(梁闪闪), Yongdong Li(李永东), Hongguang Wang(王洪广), and Yue Wang(王玥). Chin. Phys. B, 2020, 29(10): 100205.
[11] Thermal resistance matrix representation of thermal effects and thermal design of microwave power HBTs with two-dimensional array layout
Rui Chen(陈蕊), Dong-Yue Jin(金冬月), Wan-Rong Zhang(张万荣), Li-Fan Wang(王利凡), Bin Guo(郭斌), Hu Chen(陈虎), Ling-Han Yin(殷凌寒), Xiao-Xue Jia(贾晓雪). Chin. Phys. B, 2019, 28(9): 098502.
[12] Impact of proton-induced alteration of carrier lifetime on single-event transient in SiGe heterojunction bipolar transistor
Jia-Nan Wei(魏佳男), Chao-Hui He(贺朝会), Pei Li(李培), Yong-Hong Li(李永宏), Hong-Xia Guo(郭红霞). Chin. Phys. B, 2019, 28(7): 076106.
[13] Design and fabrication of 10-kV silicon-carbide p-channel IGBTs with hexagonal cells and step space modulated junction termination extension
Zheng-Xin Wen(温正欣), Feng Zhang(张峰), Zhan-Wei Shen(申占伟), Jun Chen(陈俊), Ya-Wei He(何亚伟), Guo-Guo Yan(闫果果), Xing-Fang Liu(刘兴昉), Wan-Shun Zhao(赵万顺), Lei Wang(王雷), Guo-Sheng Sun(孙国胜), Yi-Ping Zeng(曾一平). Chin. Phys. B, 2019, 28(6): 068504.
[14] Analysis of displacement damage effects on bipolar transistors irradiated by spallation neutrons
Yan Liu(刘岩), Wei Chen(陈伟), Chaohui He(贺朝会), Chunlei Su(苏春垒), Chenhui Wang(王晨辉), Xiaoming Jin(金晓明), Junlin Li(李俊霖), Yuanyuan Xue(薛院院). Chin. Phys. B, 2019, 28(6): 067302.
[15] Transmission properties of microwave in rectangular waveguide through argon plasma
Xiaoyu Han(韩晓宇), Dawei Li(李大伟), Meie Chen(陈美娥), Zhan Zhang(张展), Zheng Li(李铮), Yujian Li(李雨键), Junhong Wang(王均宏). Chin. Phys. B, 2019, 28(3): 035204.
No Suggested Reading articles found!