Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(5): 058106    DOI: 10.1088/1674-1056/22/5/058106
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Fabrication of ZnO nanoparticles-embedded hydrogenated diamond-like carbon films by electrochemical deposition technique

Zhang Pei-Zeng (张培增)a, Li Rui-Shan (李瑞山)b, Pan Xiao-Jun (潘效军)a, Xie Er-Qing (谢二庆)a
a Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000, China;
b School of Science, Lanzhou University of Science and Technology, Lanzhou 730050, China
Abstract  ZnO nanoparticles-embedded hydrogenated diamond-like carbon (ZnO-DLC) films have been prepared by electrochemical deposition in ambient conditions. The morphology, composition, and microstructure of the films have been investigated. The results show that the resultant films are hydrogenated diamond-like carbon films embedded with ZnO nanoparticles in wurtzite structure, and the content and size of the ZnO nanoparticles increase with increasing deposition voltage, which are confirmed by X-ray photoelectron spectroscopy (XPS), Raman, and transmission electron microscope (TEM). Furthermore, a possible mechanism used to describe the growth process of ZnO-DLC films by electrochemical deposition is also discussed.
Keywords:  diamond-like carbon      ZnO nanoparticles      electrochemical deposition      microstructure  
Received:  04 December 2012      Revised:  02 January 2013      Accepted manuscript online: 
PACS:  81.15.Pq (Electrodeposition, electroplating)  
  68.55.-a (Thin film structure and morphology)  
  61.46.Df (Structure of nanocrystals and nanoparticles ("colloidal" quantum dots but not gate-isolated embedded quantum dots))  
Corresponding Authors:  Xie Er-Qing     E-mail:  xieeq@lzu.edu.cn

Cite this article: 

Zhang Pei-Zeng (张培增), Li Rui-Shan (李瑞山), Pan Xiao-Jun (潘效军), Xie Er-Qing (谢二庆) Fabrication of ZnO nanoparticles-embedded hydrogenated diamond-like carbon films by electrochemical deposition technique 2013 Chin. Phys. B 22 058106

[1] Wen X M, Ohno N and Zhang Z M 2001 Chin. Phys. 10 874
[2] Yang P, Yan H, Mao S, Russo R, Johnson J, Saykally R, Morris N, Pham J, He R and Choi J 2002 Adv. Funct. Mater. 12 323
[3] Xiao Z Y, Zhang W L, Gao H, Wang Y X, Zhang X T, Liu Y C, Zhang J Y and Xu W 2003 Acta Phys. Sin. 52 740 (in Chinese)
[4] Robertson J 2002 Mater. Sci. Eng. R 37 129
[5] Goglia P R, Berkowitz J, Hoehn J, Xidis A and Stover L 2001 Diamond Relat. Mater. 10 271
[6] Guo H, Qi Y and Li X 2008 Appl. Phys. Lett. 92 241921
[7] Krishnan L K, Varghese N, Muraleedharan C V, Bhuvaneshwar G S, Derangére F, Sampeur Y and Suryanarayanan R 2002 Biomol. Eng. 19 251
[8] Hsieh J, Chua D H C, Tay B K, Teo E H T and Tanemura M 2008 Diamond Relat. Mater. 17 167
[9] Namba Y 1992 J. Vac. Sci. Technol. A 10 3368
[10] Wang H, Shen M R, Ning Z Y, Ye C, Cao C B, Dang H Y and Zhu H S 1996 Appl. Phys. Lett. 69 1074
[11] Yan X B, Xu T, Chen G, Liu H W and Yang S R 2004 Carbon 42 3103
[12] Li R S, Zhou M, Pan X J, Zhang Z X, Lu B A, Wang T and Xie E Q 2009 J. Appl. Phys. 105 066107
[13] Wan S H, Wang L P and Xue Q J 2009 Electrochem. Commun. 11 99
[14] Amin M S, Randeniya L K, Bendavid A, Martin P J and Preston E W 2009 Diamond Relat. Mater. 18 1139
[15] Chen G, Zhang J Y and Yang S R 2007 Electrochem. Commun. 9 1053
[16] Jung D R, Son D, Kim J, Kim C and Park B 2008 Appl. Phys. Lett. 93 163118
[17] Mizokawa Y, Miyasato T, Nakamura S, Geib M and Wilmsen C W 1987 J. Vac. Sci. Technol. A 5 2809
[18] Rajalakshmia M, Arora A K, Bendre B S and Mahamuni S 2000 J. Appl. Phys. 87 2445
[19] Cuscó R, Alarcón-Lladó E, Ibáñez J and Artús L 2007 Phys. Rew. B 75 165202
[20] Irmer G and Dorner-Reisel A 2005 Adv. Eng. Mater. 7 694
[21] Tseng Y K, Huang C J, Cheng H M, Lin I N, Liu K S and Chen I C 2003 Adv. Funct. Mater. 13 811
[22] Yerokhin A L, Nie X, Leyland A, Matthews A and Dowey S J 1999 Surf. Coat. Technol. 122 73
[23] Wan S H, Wang L P and Xue Q J 2010 Electrochem. Commun. 12 61
[1] Effect of thickness of antimony selenide film on its photoelectric properties and microstructure
Xin-Li Liu(刘欣丽), Yue-Fei Weng(翁月飞), Ning Mao(毛宁), Pei-Qing Zhang(张培晴), Chang-Gui Lin(林常规), Xiang Shen(沈祥), Shi-Xun Dai(戴世勋), and Bao-An Song(宋宝安). Chin. Phys. B, 2023, 32(2): 027802.
[2] Surface structure modification of ReSe2 nanosheets via carbon ion irradiation
Mei Qiao(乔梅), Tie-Jun Wang(王铁军), Yong Liu(刘泳), Tao Liu(刘涛), Shan Liu(刘珊), and Shi-Cai Xu(许士才). Chin. Phys. B, 2023, 32(2): 026101.
[3] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[4] Microstructure and hardening effect of pure tungsten and ZrO2 strengthened tungsten under carbon ion irradiation at 700℃
Chun-Yang Luo(罗春阳), Bo Cui(崔博), Liu-Jie Xu(徐流杰), Le Zong(宗乐), Chuan Xu(徐川), En-Gang Fu(付恩刚), Xiao-Song Zhou(周晓松), Xing-Gui Long(龙兴贵), Shu-Ming Peng(彭述明), Shi-Zhong Wei(魏世忠), and Hua-Hai Shen(申华海). Chin. Phys. B, 2022, 31(9): 096102.
[5] Two-dimensional Sb cluster superlattice on Si substrate fabricated by a two-step method
Runxiao Zhang(张润潇), Zi Liu(刘姿), Xin Hu(胡昕), Kun Xie(谢鹍), Xinyue Li(李新月), Yumin Xia(夏玉敏), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2022, 31(8): 086801.
[6] Surface chemical disorder and lattice strain of GaN implanted by 3-MeV Fe10+ ions
Jun-Yuan Yang(杨浚源), Zong-Kai Feng(冯棕楷), Ling Jiang(蒋领), Jie Song(宋杰), Xiao-Xun He(何晓珣), Li-Ming Chen(陈黎明), Qing Liao(廖庆), Jiao Wang(王姣), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2022, 31(4): 046103.
[7] Thermoelectric enhancement in triple-doped strontium titanate with multi-scale microstructure
Zheng Cao(曹正), Qing-Qiao Fu(傅晴俏), Hui Gu(顾辉), Zhen Tian(田震), Xinba Yaer(新巴雅尔), Juan-Juan Xing(邢娟娟), Lei Miao(苗蕾), Xiao-Huan Wang(王晓欢), Hui-Min Liu(刘慧敏), and Jun Wang(王俊). Chin. Phys. B, 2021, 30(9): 097204.
[8] Effect of the potential function and strain rate on mechanical behavior of the single crystal Ni-based alloys: A molecular dynamics study
Qian Yin(尹倩), Ye-Da Lian(连业达), Rong-Hai Wu(巫荣海), Li-Qiang Gao(高利强), Shu-Qun Chen(陈树群), and Zhi-Xun Wen(温志勋). Chin. Phys. B, 2021, 30(8): 080204.
[9] Microstructure and magnetocaloric properties in melt-spun and high-pressure hydrogenated La0.5Pr0.5Fe11.4Si1.6 ribbons
Qian Liu(刘倩), Min Tong(佟敏), Xin-Guo Zhao(赵新国), Nai-Kun Sun(孙乃坤), Xiao-Fei Xiao(肖小飞), Jie Guo(郭杰), Wei Liu(刘伟), and Zhi-Dong Zhang(张志东). Chin. Phys. B, 2021, 30(8): 087502.
[10] Formation of nano-twinned 3C-SiC grains in Fe-implanted 6H-SiC after 1500-℃ annealing
Zheng Han(韩铮), Xu Wang(王旭), Jiao Wang(王娇), Qing Liao(廖庆), and Bingsheng Li(李炳生). Chin. Phys. B, 2021, 30(8): 086107.
[11] Effects of post-sinter annealing on microstructure and magnetic properties of Nd-Fe-B sintered magnets with Nd-Ga intergranular addition
Jin-Hao Zhu(朱金豪), Lei Jin(金磊), Zhe-Huan Jin(金哲欢), Guang-Fei Ding(丁广飞), Bo Zheng(郑波), Shuai Guo(郭帅), Ren-Jie Chen(陈仁杰), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2021, 30(6): 067503.
[12] Effect of helium concentration on irradiation damage of Fe-ion irradiated SIMP steel at 300 ℃ and 450 ℃
Zhen Yang(杨振), Junyuan Yang(杨浚源), Qing Liao(廖庆), Shuai Xu(徐帅), and Bingsheng Li(李炳生). Chin. Phys. B, 2021, 30(5): 056107.
[13] Leakage of an eagle flight feather and its influence on the aerodynamics
Di Tang (唐迪), Dawei Liu(刘大伟), Yin Yang(杨茵), Yang Li(李阳), Xipeng Huang(黄喜鹏), and Kai Liu(刘凯). Chin. Phys. B, 2021, 30(3): 034701.
[14] Fractal microstructure of Ag film via plasma discharge as SERS substrates
Xue-Fen Kan(阚雪芬), Cheng Yin(殷澄), Zhuang-Qi Cao(曹庄琪), Wei Su(苏巍), Ming-Lei Shan(单鸣雷), and Xian-Ping Wang(王贤平). Chin. Phys. B, 2021, 30(12): 125201.
[15] Accurate prediction method for the microstructure of amorphous alloys without non-metallic elements
Wei Zhao(赵伟), Jia-Lin Cheng(成家林), Gong Li(李工), and Xin Wang(王辛). Chin. Phys. B, 2021, 30(11): 116103.
No Suggested Reading articles found!