CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Influence of strain and electric field on the properties of silicane |
Cheng Gang (承刚), Liu Peng-Fei (刘鹏飞), Li Zi-Tao (李子涛) |
State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China |
|
|
Abstract We investigate the influence of strain and electric field on the properties of silicane sheet. Some elastic parameters of silicane, such as an in-plane stiffness of 52.55 N/m and a Poisson's ratio of 0.24, are obtained by calculating the strain energy. Compared with silicene, silicane is softer because of its relatively weaker Si-Si bonds. The band structure of silicane is tunable by a uniform tensile strain, with the increase of which the band gap decreases monotonously. Moreover, silicane undergoes an indirect-direct gap transition under a small strain, and a semiconductor-metal transition under a large strain. The electric field can change the Si-H bond length of silicane significantly. When a strong field is applied, the H atom at the high potential side becomes desorbed, while the H atom at the low potential side keeps bonded. So an external electric field can help to produce single-side hydrogenated silicene from silicane. We believe this study will be helpful for the application of silicane in the future.
|
Received: 07 June 2012
Revised: 23 October 2012
Accepted manuscript online:
|
PACS:
|
62.20.-x
|
(Mechanical properties of solids)
|
|
73.22.-f
|
(Electronic structure of nanoscale materials and related systems)
|
|
61.46.-w
|
(Structure of nanoscale materials)
|
|
71.15.-m
|
(Methods of electronic structure calculations)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 60925016). |
Corresponding Authors:
Cheng Gang
E-mail: Chenggang@semi.ac.cn
|
Cite this article:
Cheng Gang (承刚), Liu Peng-Fei (刘鹏飞), Li Zi-Tao (李子涛) Influence of strain and electric field on the properties of silicane 2013 Chin. Phys. B 22 046201
|
[1] |
Guzmán-Verri G G and Lew Yan Voon L C 2007 Phys. Rev. B 76 075131
|
[2] |
Cahangirov S, Topsakal M, Akturk E, Sahin H and Ciraci S 2009 Phys. Rev. Lett. 102 236804
|
[3] |
Kara A, Enriquez H, Seitsonen A P, Lew Yan Voon L C, Vizzini S, Aufray B and Oughaddou H 2012 Surf. Sci. Rep. 67 1
|
[4] |
Ding Y and Ni J 2009 Appl. Phys. Lett. 95 083115
|
[5] |
Liu C C, Feng W and Yao Y 2011 Phys. Rev. Lett. 107 076802
|
[6] |
Drummond N D, Zolyomi V and Fal'ko V I 2012 Phys. Rev. B 85 075423
|
[7] |
Ni Z, Liu Q, Tang K, Zheng J, Zhou J, Qin R, Gao Z, Yu D and Lu J 2012 Nano Lett. 12 113
|
[8] |
Kang J, Wu F and Li J 2012 Appl. Phys. Lett. 100 233122
|
[9] |
Xu C, Luo G, Liu Q, Zheng J, Zhang Z, Nagase S, Gao Z and Lu J 2012 Nanoscale 4 3111
|
[10] |
Lalmi B, Oughaddou H, Enriquez H, Kara A, Vizzini S, Ealet B and Aufray B 2010 Appl. Phys. Lett. 97 223109
|
[11] |
Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta B, Ealet A and Le Lay G 2012 Phys. Rev. Lett. 108 155501
|
[12] |
De Padova P, Quaresima C, Ottaviani C, Sheverdyaeva P M, Moras P, Carbone C, Topwal D, Olivieri B, Kara A, Oughaddou H, Aufray B and Le Lay G 2010 Appl. Phys. Lett. 96 261905
|
[13] |
Aufray B, Kara A, Vizzini S, Oughaddou H, Leandri C, Ealet B and Le Lay G 2010 Appl. Phys. Lett. 96 183102
|
[14] |
Zhu F, Dong S and Cheng G 2011 Chin. Phys. B 20 077103
|
[15] |
Lu D, Yang Y, Xiao Y and Zhang X Y 2011 Chin. Phys. B 20 118101
|
[16] |
Kang J, Wu F and Li J 2011 Appl. Phys. Lett. 98 083109
|
[17] |
Kang J, Wu F, Li S S, Xia J B and Li J 2012 Appl. Phys. Lett. 100 153102
|
[18] |
Houssa M, Scalise E, Sankaran K, Pourtois G, Afanas'ev V V and Stesmans A 2011 Appl. Phys. Lett. 98 223107
|
[19] |
Ding Y and Wang Y 2012 Appl. Phys. Lett. 100 083102
|
[20] |
Zhang P, Li X D, Hu C H, Wu S Q and Zhu Z Z 2012 Phys. Lett. A 376 1230
|
[21] |
Elias D C, Nair R R, Mohiuddin T M G, Morozov S V, Blake P, Halsall M P, Ferrari A C, Boukhvalov D W, Katsnelson M I, Geim A K and Novoselov K S 2009 Science 323 610
|
[22] |
Soler J M, Artacho E, Gale J D, Garca A, Junquera J, Ordejon P and Sanchez-Portal D 2002 J. Phys: Condens. Matter 14 2745
|
[23] |
Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
[24] |
Troullier N and Martins J 1990 Solid State Commun. 74 613
|
[25] |
Topsakal M, Cahangirov S and Ciraci S 2010 Appl. Phys. Lett. 96 091912
|
[26] |
Kang J, Li J, Wu F, Li S S and Xia J B 2011 J. Phys. Chem. C 115 20466
|
[27] |
Zhang Y, Hu C H, Wen Y H, Wu S Q and Zhu Z Z 2011 New. J. Phys. 13 063047
|
[28] |
Zhang Y, Wen Y H, Zheng J C and Zhu Z Z 2009 Appl. Phys. Lett. 94 113114
|
[29] |
Zhou J, Wu M M, Zhou X and Sun Q 2009 Appl. Phys. Lett. 95 103108
|
[30] |
Zhang C and Yan S 2012 J. Phys. Chem. C 116 4163
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|