Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(4): 046202    DOI: 10.1088/1674-1056/22/4/046202
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Structural and mechanical stability of rare-earth diborides

Haci Ozisika, Engin Deligozb, Kemal Colakogluc, Gokhan Surucuc
a Department of Computer and Instructional Technologies Teaching, Aksaray University, 68100, Aksaray, Turkey;
b Department of Physics, Aksaray University, 68100, Aksaray, Turkey;
c Department of Physics, Gazi University, Teknikokullar, 06500, Ankara, Turkey
Abstract  Structural and mechanical properties of several rare-earth diborides were systematically investigated by first principles calculations. Specifically, we studied XB2, where X=Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, and Lu in the hexagonal AlB2, ReB2, and orthorhombic OsB2-type structures. The lattice parameters, bulk modulus, bond distances, second order elastic constants, and related polycrystalline elastic moduli (e.g. shear modulus, Young's modulus, Poisson's ratio, Debye temperature, sound velocities) were calculated. Our results indicate that these compounds are mechanically stable in the considered structures, and according to the "Chen's method," the predicted Vickers hardness shows that they are hard materials in AlB2- and OsB2-type structures.
Keywords:  ab initio calculations      elastic properties      hardness      rare-earth diborides  
Received:  11 August 2012      Revised:  13 September 2012      Accepted manuscript online: 
PACS:  62.20.de (Elastic moduli)  
  71.15.Nc (Total energy and cohesive energy calculations)  
Corresponding Authors:  Engin Deligoz     E-mail:  edeligoz@yahoo.com

Cite this article: 

Haci Ozisik, Engin Deligoz, Kemal Colakoglu, Gokhan Surucu Structural and mechanical stability of rare-earth diborides 2013 Chin. Phys. B 22 046202

[1] Kaner R K, Gilman J J and Tolbert S H 2005 Science 308 1268
[2] Zhou W, Wu H and Yildirim T 2007 Phys. Rev. B 76 184113
[3] Chung H Y, Weinberger M B, Yang J M, Tolbert S H and Kaner R B 2008 Appl. Phys. Lett. 92 261904
[4] Spear K E 1976 Phase Diagrams in Phase Behavior and Related Properties of Rare-Earth Borides, Vol. 4 (New York: Academic Press)
[5] Novikov V V and Matovnikov A V 2008 Inorg. Mater. 44 134
[6] Mori T 2008 Handbook on the Physics and Chemistry of Rare Earths, Vol. 38 (Amsterdam: North-Holland)
[7] Matthias B T, Geballe T H, Andres K, Corenzwit E, Hull G W and Maita J P 1968 Science 159 530
[8] Etourneau J and Less J 1985 Common. Met. 110 267
[9] Gignoux D and Schmitt D 1997 Magnetism of Compounds of Rare Earths with Non-magnetic Metals (Amsterdam: Elsevier)
[10] Buschow A K H J 1977 Boron and Refractory Borides (Berlin: Springer-Verlag)
[11] Matovnikov B, Urbanovich V, Chukina T, Sidorov A and Novikov V 2009 Inorg. Mater. 45 366
[12] Yang F, Han R S, Tong N H and Guo W 2002 Chin. Phys. Lett. 19 1336
[13] Cannon J F, Cannon D M, Hall H T and Less J 1977 Common. Met. 56 83
[14] Will G, Lehmann V and Buschow K H J 1978 Institute of Physics Conference Series 37 255
[15] Novikov V and Matovnikov A 2008 Inorg. Mater. 44 134
[16] Novikov V and Matovnikov A 2007 J. Therm. Anal. Calorim. 88 597
[17] Babizhetskyy V, Roger J, Dputier S, Jardin R, Bauer J and Gurin R 2004 J. Solid State Chem. 177 415
[18] Roger J, Babizhetskyy V, Guizouarn T, Hiebl K, Gurin R and Halet J F 2006 J. Alloys Compd. 417 72
[19] Novikov V, Chukina T and Verevkin A 2010 Phys. Solid State 52 364
[20] Mori T, Takimoto T, Leithe-Jasper A, Cardoso-Gil R, Schnelle W, Auffermann G, Rosner H and Grin Y 2009 Phys. Rev. B 79 104418
[21] Deligoz E, Ozisik H, Colakoglu K, Surucu G and Ciftci Y O 2011 J. Alloys Compd. 509 1711
[22] Rogl P and Klesnar H 1992 J. Solid State Chem. 98 99
[23] Castellano R 1972 Mater. Res. Bull. 7 261
[24] Zazoua F, Kacimi S, Djermouni M and Zaoui A 2011 J. Appl. Phys. 110 014908
[25] Post B 1964 Proceedings of the 3rd Conference on Rare Earth Research, ed. Vorres K S (New York: Gordon and Breach)
[26] Bauer J and Debuigne J 1973 C. R. Acad. Sci., Ser. C 277 85.1
[27] Spear K E 1976 J. Less-Common Met. 47 195
[28] Duan Y H, Sun Y, Guo Z Z, Peng M J, Zhu P X and He J H 2012 Comp. Mater. Sci. 51 112
[29] Kresse G and Hafner J 1993 Phys. Rev. B 48 13115
[30] Kresse G and Hafner J 1994 Phys. Rev. B 49 14251
[31] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[32] Blochl P E 1994 Phys. Rev. B 50 17953
[33] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[34] Sholl D S and Steckel J A 2009 Density Functional Theory: A Practical Introduction (New York: Jhon Wiley & Sons) p. 63
[35] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[36] LePage Y and Saxe P 2001 Phys. Rev. B 63 174103
[37] Hill R 1952 Proceedings of the Physical Society, Section A 65 349
[38] Dieter G E 1988 Mechanical Metallurgy (London: McGraw-Hill)
[39] Fu H, Li D, Peng F, Gao T and Cheng X 2008 Comp. Mater. Sci. 44 774
[40] Pugh S F 1954 Phil. Mag. 45 833http://www.tandfonline.com/doi/abs/10.1080/14786440808520496
[41] Shein I R and Ivanovskii A L 2008 J. Phys.: Condens. Matter 20 415218
[42] Bannikov V V, Shein I R and Ivanovskii A L 2007 Phys. Status Solidi-R. 1 89
[43] Zhao W J, Xu H B and Wang Y X 2009 Phys. Status Solidi RRL. 3 272
[44] Gao F M, He J L, Wu E D, Lu S M, Yu L D and Li D C 2003 Phys. Rev. Lett. 91 015502
[45] Simunek A and Vackar J 2006 Phys. Rev. Lett. 96 085501
[46] Mukhanov V A, Kurakevych O O and Solozhenko V L 2008 High Press. Res. 28 531
[47] Li K, Wang X, Zhang F and Xue D 2008 Phys. Rev. Lett. 100 235504
[48] Smedskjaer M M, Mauro J C and Yue Y Z 2010 Phys. Rev. Lett. 105 115503
[49] Chen X Q, Niu H, Li D and Li Y 2011 Intermetallics 19 1275
[50] Wang Y X 2007 Appl. Phys. Lett. 91 101904
[51] Ravindan P, Fast L, Korzhavyi P A, Johansson B, Wills J and Eriksson O 1998 J. Appl. Phys. 84 1891
[52] Ivonovskii A L 2012 Inorganic Materials: Applied Research 3 319
[53] Wang Y X 2007 Appl. Phys. Lett. 91 101904
[54] Simunek A 2007 Phys. Rev. B 75 172108
[55] Johnston I, Keeler G, Rollins R and Spicklemire S 1996 Solid State Physics Simulations, The Consortium for Upper-Level Physics Software (New York: Jhon Wiley)
[56] Anderson O L 1963 J. Phys. Chem. Solids 24 909
[57] Schreiber E, Anderson O L and Soga N 1973 Elastic Constants and Their Measurements (New York: McGraw-Hill)
[1] Microstructure and hardening effect of pure tungsten and ZrO2 strengthened tungsten under carbon ion irradiation at 700℃
Chun-Yang Luo(罗春阳), Bo Cui(崔博), Liu-Jie Xu(徐流杰), Le Zong(宗乐), Chuan Xu(徐川), En-Gang Fu(付恩刚), Xiao-Song Zhou(周晓松), Xing-Gui Long(龙兴贵), Shu-Ming Peng(彭述明), Shi-Zhong Wei(魏世忠), and Hua-Hai Shen(申华海). Chin. Phys. B, 2022, 31(9): 096102.
[2] Structure, phase evolution and properties of Ta films deposited using hybrid high-power pulsed and DC magnetron co-sputtering
Min Huang(黄敏), Yan-Song Liu(刘艳松), Zhi-Bing He(何智兵), and Yong Yi(易勇). Chin. Phys. B, 2022, 31(6): 066101.
[3] Density functional theory investigation on lattice dynamics, elastic properties and origin of vanished magnetism in Heusler compounds CoMnVZ (Z= Al, Ga)
Guijiang Li(李贵江), Enke Liu(刘恩克), Guodong Liu(刘国栋), Wenhong Wang(王文洪), and Guangheng Wu(吴光恒). Chin. Phys. B, 2021, 30(8): 083103.
[4] Properties of B4C-TiB2 ceramics prepared by spark plasma sintering
Jingzhe Fan(范静哲), Weixia Shen(沈维霞), Zhuangfei Zhang(张壮飞, Chao Fang(房超), Yuewen Zhang(张跃文), Liangchao Chen(陈良超), Qianqian Wang(王倩倩), Biao Wan(万彪), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(3): 038105.
[5] Progress in functional studies of transition metal borides
Teng Ma(马腾), Pinwen Zhu(朱品文), and Xiaohui Yu(于晓辉). Chin. Phys. B, 2021, 30(10): 108103.
[6] tP40 carbon: A novel superhard carbon allotrope
Heng Liu(刘恒), Qing-Yang Fan(樊庆扬)†, Fang Yang(杨放), Xin-Hai Yu(于新海), Wei Zhang(张伟), and Si-Ning Yun(云斯宁)‡. Chin. Phys. B, 2020, 29(10): 106102.
[7] Surperhard monoclinic BC6N allotropes: First-principles investigations
Nian-Rui Qu(屈年瑞), Hong-Chao Wang(王洪超), Qing Li(李青), Yi-Ding Li(李一鼎), Zhi-Ping Li(李志平), Hui-Yang Gou(缑慧阳), Fa-Ming Gao(高发明). Chin. Phys. B, 2019, 28(9): 096201.
[8] Structural, elastic, and electronic properties of topological semimetal WC-type MX family by first-principles calculation
Sami Ullah, Lei Wang(王磊), Jiangxu Li(李江旭), Ronghan Li(李荣汉), Xing-Qiu Chen(陈星秋). Chin. Phys. B, 2019, 28(7): 077105.
[9] Quantum density functional theory studies of structural, elastic, and opto-electronic properties of ZMoO3 (Z=Ba and Sr) under pressure
Saad Tariq, A A Mubarak, Saher Saad, M Imran Jamil, S M Sohail Gilani. Chin. Phys. B, 2019, 28(6): 066101.
[10] Nanosheet-structured B4C with high hardness up to 42 GPa
Chang-Chun Wang(王常春), Le-Le Song(宋乐乐). Chin. Phys. B, 2019, 28(6): 066201.
[11] First-principles study of structural, mechanical, and electronic properties of W alloying with Zr
Ning-Ning Zhang(张宁宁), Yu-Juan Zhang(张玉娟), Yu Yang(杨宇), Ping Zhang(张平), Chang-Chun Ge(葛昌纯). Chin. Phys. B, 2019, 28(4): 046301.
[12] Orientation dependence of elastic properties in orthorhombic Ca3Mn2O7
Gang Jian(简刚), Mei-Rui Liu(刘美瑞), Chen Zhang(张晨), Jie Lu(卢杰), Chao Yan(晏超). Chin. Phys. B, 2019, 28(2): 026201.
[13] Elastic properties of anatase titanium dioxide nanotubes: A molecular dynamics study
Kang Yang(杨康), Liang Yang(杨亮), Chang-Zhi Ai(艾长智), Zhao Wang(王赵), Shi-Wei Lin(林仕伟). Chin. Phys. B, 2019, 28(10): 103102.
[14] The effects of combining alloying elements on the elastic properties of γ-Ni in Ni-based superalloy: High-throughput first-principles calculations
Baokun Lu(路宝坤), Chongyu Wang(王崇愚). Chin. Phys. B, 2018, 27(7): 077104.
[15] Effect of pressure on the elastic properties and optoelectronic behavior of Zn4B6O13: First-principles investigation
Pei-Da Wang(王培达), Zhen-Yuan Jia(贾镇源), Yu-Han Zhong(钟玉菡), Hua-Yue Mei(梅华悦), Chun-Mei Li(李春梅), Nan-Pu Cheng(程南璞). Chin. Phys. B, 2018, 27(5): 057101.
No Suggested Reading articles found!