Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(3): 035203    DOI: 10.1088/1674-1056/22/3/035203
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Comparative investigation of resistance and ability to trigger high voltage discharge for single and multiple femtosecond filaments in air

Guo Kai-Min (郭凯敏)a b, Hao Zuo-Qiang (郝作强)a, Lin Jing-Quan (林景全)a, Sun Chang-Kai (孙长凯)a, Gao Xun (高勋)a, Zhao Zhen-Ming (赵振明)a
a School of Science, Changchun University of Science and Technology, Changchun 130022, China;
b School of Physical Science and Technology, Baotou Teachers College, Baotou 014030, China
Abstract  A comparative investigation of resistance and ability to trigger high voltage (HV) discharge for single filament (SF) and multiple filaments (MF) has been carried out. The experimental results show that the trend of the breakdown threshold of the SF exactly follows that of its resistance, but this is not the case for the MF. The MF's resistance is much smaller than SF's. However, the MF shows a bit higher HV breakdown threshold than the SF. The underlying physics is that the measured resistance of the MF is collectively contributed by every filament in the MF while the HV breakdown threshold is determined by only one single discharging path.
Keywords:  femtosecond filament      resistance      high voltage breakdown threshold  
Received:  26 May 2012      Revised:  05 November 2012      Accepted manuscript online: 
PACS:  52.38.Hb (Self-focussing, channeling, and filamentation in plasmas)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11074027, 60978014, 61178022, 11274053, and 11211120156), the Funds from Sci. & Tech. Deparment of Jilin Province, China (Grant No. 20111812).
Corresponding Authors:  Lin Jing-Quan     E-mail:  linjingquan@cust.edu.cn

Cite this article: 

Guo Kai-Min (郭凯敏), Hao Zuo-Qiang (郝作强), Lin Jing-Quan (林景全), Sun Chang-Kai (孙长凯), Gao Xun (高勋), Zhao Zhen-Ming (赵振明) Comparative investigation of resistance and ability to trigger high voltage discharge for single and multiple femtosecond filaments in air 2013 Chin. Phys. B 22 035203

[1] Braun A, Korn G, Liu X, Du D, Squier J and Mourou G 1995 Opt. Lett. 20 73
[2] Chin S L, Akoezbek N, Proulx A, Petit S and Bowden C M 2001 Opt. Commun. 188 181
[3] Kasparian J, Ackermann R, André Y B, Méchain G, Méjean G, Prade B, Rohwetter P, Salmon E, Stelmaszczyk K, Yu J, Mysyrowicz A, Sauerbrey R, Wöste L and Wolf J P 2008 Opt. Express 16 5673
[4] Zhao X M, Diels J, Wang C Y and Elizondo J M 1995 IEEE J. Quantum Electron. 31 599
[5] Tzortzakis S, Prade B, Franco M, Mysyrowicz A, Hüller S and Mora P 2001 Phys. Rev. E 64 57401
[6] Houard A, D'Amico C, Liu Y, André Y B, Franco M, Prade B, Mysyrowicz A, Salmon E, Pierlot P and Cleon L M 2007 Appl. Phys. Lett. 90 171501
[7] Schillinger H and Sauerbrey R 1999 Appl. Phys. B 68 753
[8] Tzortzakis S, Franco M A, André Y B, Chiron A, Lamouroux B, Prade B S and Mysyrowicz A 1999 Phys. Rev. E 60 R3505
[9] Yang H, Zhang J, Li Y, Zhang J, Li Y, Chen Z, Teng H, Wei Z and Sheng Z 2002 Phys. Rev. E 66 16406
[10] Zhang Z, Zhang J, Li Y T, Hao Z Q, Zheng Z Y, Yuan X H and Wang Z H 2006 Acta Phys. Sin. 55 357 (in Chinese)
[11] Ladouceur H D, Baronavski A P, Lohrmann D, Grounds P W and Girardi P G 2001 Opt. Commun. 189 107
[12] Guo K M, Gao X, Xue N L, Zhao Z M, Li H J, Lu Y and Lin J Q 2011 Acta Phys. Sin. 60 105203 (in Chinese)
[13] Hao Z Q, Zhang J, Yu J, Zheng Z Y, Yuan X H, Zhang Z, Li Y T, Wang Z H, Ling W J and Wei Z Y 2006 Sci. China Ser. G 49 228
[14] La Fontaine B, Comtois D, Chien C Y, Desparois A, Génin F, Jarry G, Johnston T, Kieffer J C, Martin F, Mawassi R, Pépin H, Rizk F A M, Vidal F, Potvin C, Couture P and Mercure H P 2000 J. Appl. Phys. 88 610
[15] Guo K M, Lin J Q, Hao Z Q, Gao X, Zhao Z M, Sun C K and Li B Z 2012 Opt. Lett. 37 259
[16] Tzortzakis S, Bergé L, Couairon A, Franco M, Prade B and Mysyrowicz A 2001 Phys. Rev. Lett. 86 5470
[17] Skupin S, Bergé L, Peschel U, Lederer F, Méjean G, Yu J, Kasparian J, Salmon E, Wolf J P, Rodriguez M, Wöste L, Bourayou R and Sauerbrey R 2004 Phys. Rev. E 70 46602
[1] Recent progress on the planar Hall effect in quantum materials
Jingyuan Zhong(钟景元), Jincheng Zhuang(庄金呈), and Yi Du(杜轶). Chin. Phys. B, 2023, 32(4): 047203.
[2] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[3] Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process
Jingshu Guo(郭静姝), Jiejie Zhu(祝杰杰), Siyu Liu(刘思雨), Jielong Liu(刘捷龙), Jiahao Xu(徐佳豪), Weiwei Chen(陈伟伟), Yuwei Zhou(周雨威), Xu Zhao(赵旭), Minhan Mi(宓珉瀚), Mei Yang(杨眉), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(3): 037303.
[4] Abnormal magnetoresistance effect in the Nb/Si superconductor-semiconductor heterojunction
Zhi-Wei Hu(胡志伟) and Xiang-Gang Qiu(邱祥冈). Chin. Phys. B, 2023, 32(3): 037401.
[5] Measurement of T wave in magnetocardiography using tunnel magnetoresistance sensor
Zhihong Lu(陆知宏), Shuai Ji(纪帅), and Jianzhong Yang(杨建中). Chin. Phys. B, 2023, 32(2): 020703.
[6] Strain-mediated magnetoelectric control of tunneling magnetoresistance in magnetic tunneling junction/ferroelectric hybrid structures
Wenyu Huang(黄文宇), Cangmin Wang(王藏敏), Yichao Liu(刘艺超), Shaoting Wang(王绍庭), Weifeng Ge(葛威锋), Huaili Qiu(仇怀利), Yuanjun Yang(杨远俊), Ting Zhang(张霆), Hui Zhang(张汇), and Chen Gao(高琛). Chin. Phys. B, 2022, 31(9): 097502.
[7] Analytical formula describing the non-saturating linear magnetoresistance in inhomogeneous conductors
Shan-Shan Chen(陈珊珊), Yang Yang(杨阳), and Fan Yang(杨帆). Chin. Phys. B, 2022, 31(8): 087303.
[8] A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance
Pei Shen(沈培), Ying Wang(王颖), and Fei Cao(曹菲). Chin. Phys. B, 2022, 31(7): 078501.
[9] Spin transport in epitaxial Fe3O4/GaAs lateral structured devices
Zhaocong Huang(黄兆聪), Wenqing Liu(刘文卿), Jian Liang(梁健), Qingjie Guo(郭庆杰), Ya Zhai(翟亚), and Yongbing Xu(徐永兵). Chin. Phys. B, 2022, 31(6): 068505.
[10] Maximum entropy mobility spectrum analysis for the type-I Weyl semimetal TaAs
Wen-Chong Li(李文充), Ling-Xiao Zhao(赵凌霄), Hai-Jun Zhao(赵海军),Gen-Fu Chen(陈根富), and Zhi-Xiang Shi(施智祥). Chin. Phys. B, 2022, 31(5): 057103.
[11] Magnetoresistance effect in vertical NiFe/graphene/NiFe junctions
Pei-Sen Li(李裴森), Jun-Ping Peng(彭俊平), Yue-Guo Hu(胡悦国), Yan-Rui Guo(郭颜瑞), Wei-Cheng Qiu(邱伟成), Rui-Nan Wu(吴瑞楠), Meng-Chun Pan(潘孟春), Jia-Fei Hu(胡佳飞), Di-Xiang Chen(陈棣湘), and Qi Zhang(张琦). Chin. Phys. B, 2022, 31(3): 038502.
[12] Radiation resistance property of barium gallo-germanate glass doped by Nb2O5
Gui-Rong Liu(刘桂榕), Xiao-Dong Chen(陈晓东), Hong-Gang Liu(刘红刚), Yan Wang(王琰), Min Sun(孙敏), Na Yan(闫娜), Qi Qian(钱奇), and Zhong-Min Yang(杨中民). Chin. Phys. B, 2022, 31(2): 027801.
[13] Large positive magnetoresistance in photocarrier-doped potassium tantalites
Rui-Shu Yang(杨睿姝), Ding-Bang Wang(王定邦), Yang Zhao(赵阳), Shuan-Hu Wang(王拴虎), and Ke-Xin Jin(金克新). Chin. Phys. B, 2022, 31(12): 127302.
[14] Observation of quadratic magnetoresistance in twisted double bilayer graphene
Yanbang Chu(褚衍邦), Le Liu(刘乐), Yiru Ji(季怡汝), Jinpeng Tian(田金朋), Fanfan Wu(吴帆帆), Jian Tang(汤建), Yalong Yuan(袁亚龙), Yanchong Zhao(赵岩翀), Xiaozhou Zan(昝晓州), Rong Yang(杨蓉), Kenji Watanabe, Takashi Taniguchi, Dongxia Shi(时东霞), Wei Yang(杨威), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(10): 107201.
[15] Sign reversal of anisotropic magnetoresistance and anomalous thickness-dependent resistivity in Sr2CrWO6/SrTiO3 films
Chunli Yao(姚春丽), Tingna Shao(邵婷娜), Mingrui Liu(刘明睿), Zitao Zhang(张子涛), Weimin Jiang(姜伟民), Qiang Zhao(赵强), Yujie Qiao(乔宇杰), Meihui Chen(陈美慧), Xingyu Chen(陈星宇), Ruifen Dou(窦瑞芬), Changmin Xiong(熊昌民), and Jiacai Nie(聂家财). Chin. Phys. B, 2022, 31(10): 107302.
No Suggested Reading articles found!