CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Radiation resistance property of barium gallo-germanate glass doped by Nb2O5 |
Gui-Rong Liu(刘桂榕)1,3,†, Xiao-Dong Chen(陈晓东)2,†, Hong-Gang Liu(刘红刚)4, Yan Wang(王琰)4, Min Sun(孙敏)1,3,‡, Na Yan(闫娜)1,3, Qi Qian(钱奇)1,3,§, and Zhong-Min Yang(杨中民)1,3 |
1 State Key Laboratory of Luminescent Materials and Devices and Institute of Optical Communication Materials, South China University of Technology, Guangzhou 510640, China; 2 Guangdong Planning and Designing Institute of Telecommunications Co. LTD, Guangzhou 510630, China; 3 Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, South China University of Technology, Guangzhou 510640, China; 4 Qingyuan Csg New Energy-Saving Materials Co., LTD, Qingyuan 511650, China |
|
|
Abstract Effects of Nb2O5 dopant on the radiation response of barium gallo-germanate (BGG) glass are studied mainly by electron paramagnetic resonance and absorption spectroscopy. Owing to the Nb5+↔Nb3+ interconversion in doped samples, formations of Ge-related non-bridging oxygen hole center and Ge-related electron center defects after γ-ray irradiation are inhibited. Thereby, Nb2O5 dopant can enhance radiation resistance of BGG glass, and 1.0% Nb2O5 concentration is the best.
|
Received: 01 June 2021
Revised: 17 August 2021
Accepted manuscript online: 29 September 2021
|
PACS:
|
78.55.Qr
|
(Amorphous materials; glasses and other disordered solids)
|
|
78.20.-e
|
(Optical properties of bulk materials and thin films)
|
|
77.84.Bw
|
(Elements, oxides, nitrides, borides, carbides, chalcogenides, etc.)
|
|
Fund: This work was supported by China National Funds for Guangdong Key Research and Development Program (Grant No. 2018B090904001), the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program (Grant No. 2017BT01X137), Key Laboratory of Laser Device Technology Foundation of China Ordnance Industry Group Co. (Grant No. KLLDT202010), the Key R&D Program of Guangzhou (Grant No. 202007020003), and the National Natural Science Foundation of China (Grant No. 52002131). |
Corresponding Authors:
Min Sun, Qi Qian
E-mail: s452936140@163.com;qianqi@scut.edu.cn
|
Cite this article:
Gui-Rong Liu(刘桂榕), Xiao-Dong Chen(陈晓东), Hong-Gang Liu(刘红刚), Yan Wang(王琰), Min Sun(孙敏), Na Yan(闫娜), Qi Qian(钱奇), and Zhong-Min Yang(杨中民) Radiation resistance property of barium gallo-germanate glass doped by Nb2O5 2022 Chin. Phys. B 31 027801
|
[1] Jiang Z H and Zhang Q Y 2014 Prog. Mater. Sci. 61 144 [2] Hu Y B, Qiu J B, Zhou D C, Song Z G, Yang Z W, Wang R F, Jiao Q and Zhou D L 2014 Chin. Phys. B 23 024205 [3] Bayya S S, Chin G D, Sanghera J S and Aggarwal I D 2006 Opt. Express 14 11687 [4] Hongisto M, Veber A, Petit Y, Cardinal T, Danto, Jubera V and Petit L 2020 Materials 13 3846 [5] Li X P, Chen B J, Shen R S, Zhang J S, Sun J S, Cheng L H, Zhong H Y, Tian Y, Fu S B and Du G T 2013 Chin. Phys. B 22 023202 [6] Wen X, Tang G W, Wang J W, Chen X D, Qian Q and Yang Z M 2015 Opt. Express 23 7722 [7] Zhang Q Y, Li T, Jiang Z H, Ji X H and Buddhudu S 2005 Appl. Phys. Lett. 87 171911 [8] Wen X, Tang G W, Yang Q, Chen X D, Qian Q, Zhang Q Y and Yang Z M 2016 Sci. Rep. 6 20344 [9] Koponen J, Söderlund M, Hoffman H J, Kliner D A, Koplow J P and Hotoleanu M 2008 Appl. Opt. 47 1247 [10] Shao C Y, Ren J J, Wang F, Ollier N, Xie F H, Zhang X Y, Zhang L, Yu C L and Hu L L 2018 J. Phys. Chem. B 122 2809 [11] Möncke D and Ehrt D 2004 Opt. Mater. 25 425 [12] Heng X B, Qian Q, Chen X D, Liu L H, Zhao X, Chen D D and Yang Z M 2015 Opt. Mater. Express 5 2272 [13] Chiesa M, Mattsson K, Taccheo S, Robin T, Lablonde L, Mechin D and Milanese D 2014 J. Non-Cryst. Solids 403 97 [14] Cheng Y 2012 J. Rare Earth. 30 1102 [15] Chen X D, Heng X B, Tang G W, Zhu T T, Sun M, Shan X J, Wen X, Guo J Y, Qian Q and Yang Z M 2016 Opt. Express 24 9149 [16] Bocharova T V, Sysoev D S, Aseev V A and Tagil'tseva N O 2015 Glass Phys. Chem. 41 378 [17] Janer C L, Carballar A, Navarro L, Galo J L and Rubio R M 2013 IEEE Photon. J. 5 6100511 [18] Makoto F, Tomofumi W, Tetsuya K, Toshiaki K, Nahoko M and Yoshimichi O 1998 Phys. Rev. B 57 3920 [19] Padlyak B V 2003 Radiat. Eff. Defects Solids 158 411 [20] Ju S, Watekar P R, Ryu Y T, Lee Y, Kang S G, Kim Y, Linganna K, Kim Y H and Han W T 2019 Fiber Integr. Opt. 38 191 [21] Padlyak B V, Jungner H, Fabisiak K and Dubelt S P 2006 Rev. Adv. Mater. Sci. 12 97 [22] Ou Y W, Baccaro S, Zhang Y P, Yang Y X and Chen G R 2010 J. Am. Ceram. Soc. 93 338 [23] Mahmoud H 2011 J. Rad. Res. Appl. Sci. 4 1107 [24] Zhou Y T, Baccaro S, Cemmi A, Yang Y X and Chen G R 2015 Phys. Status Solidi C 12 76 [25] Fu X J, Song L X and Li J C 2014 J. Rare Earth. 32 1037 [26] Padlyak B V 2010 Curr. Top. Biophys. 33 (suppl A) 163 [27] Nilges M, Pan Y M and Mashkovtsev R 2008 Phys. Chem. Miner. 35 103 [28] Tsai T E, Griscom D L, Friebele E J and Fleming J W 1987 J. Appl. Phys. 62 2264 [29] Friebele E J, Griscom D L, Sigel G H and Jr 1974 J. Appl. Phys. 45 3424 [30] Marzouk S Y, Elalaily N A, Ezz-Eldin F M and Abd-Allah W M 2006 Physica B 382 340 [31] Batal F H, Marzouk S Y, Nada N and Desouky S A 2010 Philos. Mag. 90 675 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|