Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(3): 035202    DOI: 10.1088/1674-1056/22/3/035202
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Kadomtsev–Petviashvili equation for dust ion-acoustic solitons in pair-ion plasmas

Hafeez Ur-Rehman
Theoretical Plasma Physics Division, PINSTECH, P.O. Nilore, Islamabad, Pakistan;Department of Physics and Applied Mathematics, PIEAS, P.O. Nilore, Islamabad, Pakistan
Abstract  Using the reductive perturbation method, we have derived the Kadomtsev–Petviashvili (KP) equation to study the nonlinear properties of electrostatic collisionless dust ion-acoustic solitons in the pair-ion (p-i) plasmas. We have chosen the fluid model for the positive ions, the negative ions, and a fraction of static charged (both positively and negatively) dust particles. Numerical solutions of these dust ion-acoustic solitons are plotted and their characteristics are discussed. It is found that only the amplitudes of the electrostatic dust ion-acoustic solitons vary when the dust is introduced in the pair-ion plasma. It is also noticed that the amplitude and the width of these solitons both vary when the thermal energy of the positive or negative ions is varied. It is shown that potential hump structures are formed when the temperature of the negative ions is higher than that of the positive ions, and potential dip structures are observed when the temperature of the positive ions supersedes that of the negative ions. As the pair-ion plasma mimics the electron–positron plasma, thus our results might be helpful in understanding the nonlinear dust ion acoustic solitary waves in super dense astronomical bodies.
Keywords:  charged and static dust particles      pair-ion plasma      soliton  
Received:  26 July 2012      Revised:  05 September 2012      Accepted manuscript online: 
PACS:  52.35.Fp (Electrostatic waves and oscillations (e.g., ion-acoustic waves))  
  52.35.Sb (Solitons; BGK modes)  
  52.27.Lw (Dusty or complex plasmas; plasma crystals)  
Corresponding Authors:  Hafeez Ur-Rehman     E-mail:  hafeezr@gmail.com

Cite this article: 

Hafeez Ur-Rehman Kadomtsev–Petviashvili equation for dust ion-acoustic solitons in pair-ion plasmas 2013 Chin. Phys. B 22 035202

[1] Surko C M, Leventhal M and Passner A 1989 Phys. Rev. Lett. 62 901
[2] Greaves R G, Tinkle M D and Surko C M 1994 Phys. Plasmas 1 1439
[3] Zhao J, Sakai J I and Nishikawa K 1996 Phys. Plasmas 3 844
[4] Esfandyari-Kalejahi A, Kourakis I and Shukla P K 2006 Phys. Plasmas 13 122310
[5] Ginzburg V L 1971 Sov. Phys. Usp. 14 83
[6] Sturrock P A 1971 Ap. J. 164 529
[7] Manchester R N and Taylor J H 1977 Pulsars (San Francisco: Freeman W. H.)
[8] Michel F C 1982 Rev. Mod. Phys. 54 1
[9] Michel F C 1991 Theory of Neutron Star Magnetospheres (Chicago: University of Chicago Press)
[10] Miller H R and Witta P J 1987 Active Galactic Nuclei (Berlin: Springer-Verlag) p. 202
[11] Gibbons G W, Hawking S W and Siklos S 1983 The Very Early Universe (Cambridge: Cambridge University Press)
[12] Zank G P and Greaves R G 1995 Phys. Rev. E 51 6079
[13] Oohara W and Hatakeyama R 2003 Phys. Rev. Lett. 91 205005
[14] Oohara W, Date D and Hatakeyama R 2005 Phys. Rev. Lett. 95 175003
[15] Mahmood S and Ur-Rehman H 2010 Phys. Plasmas 17 072305
[16] Saleem H 2007 Phys. Plasmas 14 014505
[17] Verheest F 2006 Phys. Plasmas 13 082301
[18] Mahmood S, Khan S A and Ur-Rehman H 2010 Phys. Plasmas 17 112312
[19] Saleem H, Shukla P K and Eliasson B 2008 Phys. Scr. 77 015503
[20] Zheng J 2006 Chin. Phys. 15 1028
[21] Zhao B and Zheng J 2007 Phys. Plasmas 14 062106
[22] Abdelsalam U M 2010 Physica B 405 3914
[23] Misra A P 2008 Phys. Plasmas 15 12
[24] Mushtaq A, Saeed R and Haque Q 2009 Phys. Plasmas 16 8
[25] Zhao B and Zheng J 2008 Phys. Plasmas 15 082314
[26] Ur-Rehman H 2012 Chin. Phys. Lett. 29 065201
[27] Shukla P K and Mamun A A 2002 Introduction to Dusty Plasma Physics (Bristol: Institute of Physics)
[28] Washimi H and Tanuiti T 1966 Phys. Rev. Lett. 17 996
[29] Ablowitz M J and Clarkson P A 1991 Solitons, Nonlinear Evolution and Inverse Scattering (Cambridge: Cambridge University Press)
[30] Konopechenko B 1993 Solitons in Multidimensions, Inverse Spectral Transform Method (Singapore: World Scientific)
[31] Kadomtsev B B and Petviashvili V I 1970 Soviet Physics Doklady 15 539
[32] Krall N and Trivelpiece A W 1973 Principles of Plasma Physics (San Francisco: San Francisco Press)
[33] Hatakeyama R and Oohara W 2005 Phys. Scr. T116 101
[34] Malfliet W 1992 Am. J. Phys. 60 650
[35] Mahmood S, Akhtar N and Khan S A 2012 J. Plasma Phys. 78 3
[36] Kako M and Rowlands G 1976 Plasma Physics 18 165
[37] Oohara W, Kuwabara Y and Hatakeyama R 2007 Phys. Rev. E 75 056403
[1] Riemann--Hilbert approach of the complex Sharma—Tasso—Olver equation and its N-soliton solutions
Sha Li(李莎), Tiecheng Xia(夏铁成), and Hanyu Wei(魏含玉). Chin. Phys. B, 2023, 32(4): 040203.
[2] All-optical switches based on three-soliton inelastic interaction and its application in optical communication systems
Shubin Wang(王树斌), Xin Zhang(张鑫), Guoli Ma(马国利), and Daiyin Zhu(朱岱寅). Chin. Phys. B, 2023, 32(3): 030506.
[3] Soliton molecules, T-breather molecules and some interaction solutions in the (2+1)-dimensional generalized KDKK equation
Yiyuan Zhang(张艺源), Ziqi Liu(刘子琪), Jiaxin Qi(齐家馨), and Hongli An(安红利). Chin. Phys. B, 2023, 32(3): 030505.
[4] Matrix integrable fifth-order mKdV equations and their soliton solutions
Wen-Xiu Ma(马文秀). Chin. Phys. B, 2023, 32(2): 020201.
[5] A cladding-pumping based power-scaled noise-like and dissipative soliton pulse fiber laser
Zhiguo Lv(吕志国), Hao Teng(滕浩), and Zhiyi Wei(魏志义). Chin. Phys. B, 2023, 32(2): 024207.
[6] Real-time observation of soliton pulsation in net normal-dispersion dissipative soliton fiber laser
Xu-De Wang(汪徐德), Xu Geng(耿旭), Jie-Yu Pan(潘婕妤), Meng-Qiu Sun(孙梦秋), Meng-Xiang Lu(陆梦想), Kai-Xin Li(李凯芯), and Su-Wen Li(李素文). Chin. Phys. B, 2023, 32(2): 024210.
[7] Charge self-trapping in two strand biomolecules: Adiabatic polaron approach
D Chevizovich, S Zdravković, A V Chizhov, and Z Ivić. Chin. Phys. B, 2023, 32(1): 010506.
[8] Quantitative analysis of soliton interactions based on the exact solutions of the nonlinear Schrödinger equation
Xuefeng Zhang(张雪峰), Tao Xu(许韬), Min Li(李敏), and Yue Meng(孟悦). Chin. Phys. B, 2023, 32(1): 010505.
[9] Oscillation properties of matter-wave bright solitons in harmonic potentials
Shu-Wen Guan(关淑文), Ling-Zheng Meng(孟令正), and Li-Chen Zhao(赵立臣). Chin. Phys. B, 2022, 31(8): 080506.
[10] Spatio-spectral dynamics of soliton pulsation with breathing behavior in the anomalous dispersion fiber laser
Ying Han(韩颖), Bo Gao(高博), Jiayu Huo(霍佳雨), Chunyang Ma(马春阳), Ge Wu(吴戈),Yingying Li(李莹莹), Bingkun Chen(陈炳焜), Yubin Guo(郭玉彬), and Lie Liu(刘列). Chin. Phys. B, 2022, 31(7): 074208.
[11] Gap solitons of spin-orbit-coupled Bose-Einstein condensates in $\mathcal{PT}$ periodic potential
S Wang(王双), Y H Liu(刘元慧), and T F Xu(徐天赋). Chin. Phys. B, 2022, 31(7): 070306.
[12] Sequential generation of self-starting diverse operations in all-fiber laser based on thulium-doped fiber saturable absorber
Pei Zhang(张沛), Kaharudin Dimyati, Bilal Nizamani, Mustafa M. Najm, and S. W. Harun. Chin. Phys. B, 2022, 31(6): 064204.
[13] Manipulating vector solitons with super-sech pulse shapes
Yan Zhou(周延), Keyun Zhang(张克赟), Chun Luo(罗纯), Xiaoyan Lin(林晓艳), Meisong Liao(廖梅松), Guoying Zhao(赵国营), and Yongzheng Fang(房永征). Chin. Phys. B, 2022, 31(5): 054203.
[14] Generation of mid-infrared supercontinuum by designing circular photonic crystal fiber
Ying Huang(黄颖), Hua Yang(杨华), and Yucheng Mao(毛雨澄). Chin. Phys. B, 2022, 31(5): 054211.
[15] A nonlocal Boussinesq equation: Multiple-soliton solutions and symmetry analysis
Xi-zhong Liu(刘希忠) and Jun Yu(俞军). Chin. Phys. B, 2022, 31(5): 050201.
No Suggested Reading articles found!