Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(2): 029301    DOI: 10.1088/1674-1056/22/2/029301
GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS Prev   Next  

Monitoring of the ducting by a ground-based GPS receiver

Sheng Zheng (盛峥)a b, Fang Han-Xian (方涵先)a
a College of Meteorology and Oceangraphy, PLA University of Science and Technology, Nanjing 211101, China;
b Sate Key Laboratory of Space Weather, Chinese Academy of Sciences, Beijing 100190, China
Abstract  In this paper, we describe the estimation of low-altitude refractivity structure from simulation and real ground-based GPS delays. The vertical structure of the refractive environment is modeled using three parameters, i.e., duct height, duct thickness, and duct slope. The refractivity model is implemented with a priori constraints on the duct height, thickness, and strength, which might be derived from soundings or numerical weather-prediction models. A ray propagation model maps the refractivity structure into a replica field. Replica fields are compared with the simulation observed data using a squared-error objective function. A global search for the three environmental parameters is performed using genetic algorithm. The inversion is assessed by comparing the refractivity profiles from the radiosondes to those estimated. This technique could provide near-real-time estimation of ducting effect. The results suggest that ground-based GPS provides significant atmospheric refractivity information, despite certain fundamental limitations of ground-based measurements. Radiosondes typically are launched just a few times daily. Consequently, estimates of temporally and spatially varying refractivity that assimilate GPS delays could substantially improve over-estimates using radiosonde data alone.
Keywords:  global positioning system      ducting      genetic algorithm      radio remote sensing  
Received:  29 March 2012      Revised:  02 July 2012      Accepted manuscript online: 
PACS:  93.85.Ly (Exploration of oceanic structures)  
  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 41105013); the National Natural Science Foundation of Jiangsu Province, China (Grant No. BK2011122); the Specialized Research Fund for State Key Laboratories, China (Grant No. 201120FSIC-03); and the City Meteorological Scientific Research Fund, China (Grant No. IUMKY&UMRF201111).
Corresponding Authors:  Fang Han-Xian     E-mail:  19994035@sina.com

Cite this article: 

Sheng Zheng (盛峥), Fang Han-Xian (方涵先) Monitoring of the ducting by a ground-based GPS receiver 2013 Chin. Phys. B 22 029301

[1] Yan H J 1996 AJ 112 1312
[2] Wei M, Qin X, Wang X H and Jiang W M 2007 Trans. Atmos. Sci. 30 736 (in Chinese)
[3] Sylvester J J, Konstanzer G C, Rottier J R, Dockery G D and Rowland J R 2001 APL Tech. Dig. 22 473
[4] Lowry A R, Rocken C and Sokolovskiy S V 2002 Radio Sci. 37 1041
[5] Sokolovskiy S V, Rocken C and Lowry A R 2001 Radio Sci. 36 473
[6] Engeln A V and Teixeira J 2004 J. Geophys. Res. 109 8104
[7] Rocken C 1997 J. Geophys. Res. 102 849
[8] Wu Y Y, Hong Z J, Guo P and Zheng J 2010 Chin. J. Geophys. 53 639
[9] Gerstoft P, Rogers L T, Krolik J K and Hodgkiss S W 2003 Radio Sci. 38 8053
[10] Gerstoft P, Hodgkiss S W, Rogers L T and Jablecki M 2004 Radio Sci. 39 6006
[11] Goldberg D E 1989 Genetic Algorithms in Search, Optimization and Machine Learning (Boston: Addison-Wesley Publishing Co.)
[12] Huang S X and Sheng Z 2006 Acta Phys. Sin. 55 6720 (in Chinese)
[13] Sheng Z 2011 Acta Phys. Sin. 60 119301 (in Chinese)
[14] Sheng Z and Fang H X 2012 Chin. Phys. B 21 029301
[15] Guo P, Kuo Y H and Sokolovskiy S V 2011 J. Atmos. Sci. 68 1703
[1] Demonstrate chiral spin currents with nontrivial interactions in superconducting quantum circuit
Xiang-Min Yu(喻祥敏), Xiang Deng(邓翔), Jian-Wen Xu(徐建文), Wen Zheng(郑文), Dong Lan(兰栋), Jie Zhao(赵杰), Xinsheng Tan(谭新生), Shao-Xiong Li(李邵雄), and Yang Yu(于扬). Chin. Phys. B, 2023, 32(4): 047104.
[2] Cascade excitation of vortex motion and reentrant superconductivity in flexible Nb thin films
Liping Zhang(张丽萍), Zuyu Xu(徐祖雨), Xiaojie Li(黎晓杰), Xu Zhang(张旭), Mingyang Qin(秦明阳), Ruozhou Zhang(张若舟), Juan Xu(徐娟), Wenxin Cheng(程文欣), Jie Yuan(袁洁), Huabing Wang(王华兵), Alejandro V. Silhanek, Beiyi Zhu(朱北沂), Jun Miao(苗君), and Kui Jin(金魁). Chin. Phys. B, 2023, 32(4): 047302.
[3] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[4] A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal
Gang Liu(刘刚), Yuanhang Li(李远航), Baonan Jia(贾宝楠), Yongpan Gao(高永潘), Lihong Han(韩利红), Pengfei Lu(芦鹏飞), and Haizhi Song(宋海智). Chin. Phys. B, 2023, 32(3): 034213.
[5] Flux pinning evolution in multilayer Pb/Ge/Pb/Ge/Pb superconducting systems
Li-Xin Gao(高礼鑫), Xiao-Ke Zhang(张晓珂), An-Lei Zhang(张安蕾), Qi-Ling Xiao(肖祁陵), Fei Chen(陈飞), and Jun-Yi Ge(葛军饴). Chin. Phys. B, 2023, 32(3): 037402.
[6] Fast population transfer with a superconducting qutrit via non-Hermitian shortcut to adiabaticity
Xin-Ping Dong(董新平), Zhi-Bo Feng(冯志波), Xiao-Jing Lu(路晓静), Ming Li(李明), and Zheng-Yin Zhao(赵正印). Chin. Phys. B, 2023, 32(3): 034201.
[7] Chiral symmetry protected topological nodal superconducting phase and Majorana Fermi arc
Mei-Ling Lu(卢美玲), Yao Wang(王瑶), He-Zhi Zhang(张鹤之), Hao-Lin Chen(陈昊林), Tian-Yuan Cui(崔天元), and Xi Luo(罗熙). Chin. Phys. B, 2023, 32(2): 027301.
[8] Memristor's characteristics: From non-ideal to ideal
Fan Sun(孙帆), Jing Su(粟静), Jie Li(李杰), Shukai Duan(段书凯), and Xiaofang Hu(胡小方). Chin. Phys. B, 2023, 32(2): 028401.
[9] Realization of the iSWAP-like gate among the superconducting qutrits
Peng Xu(许鹏), Ran Zhang(张然), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(2): 020306.
[10] Variational quantum simulation of thermal statistical states on a superconducting quantum processer
Xue-Yi Guo(郭学仪), Shang-Shu Li(李尚书), Xiao Xiao(效骁), Zhong-Cheng Xiang(相忠诚), Zi-Yong Ge(葛自勇), He-Kang Li(李贺康), Peng-Tao Song(宋鹏涛), Yi Peng(彭益), Zhan Wang(王战), Kai Xu(许凯), Pan Zhang(张潘), Lei Wang(王磊), Dong-Ning Zheng(郑东宁), and Heng Fan(范桁). Chin. Phys. B, 2023, 32(1): 010307.
[11] Finite superconducting square wire-network based on two-dimensional crystalline Mo2C
Zhen Liu(刘震), Zi-Xuan Yang(杨子萱), Chuan Xu(徐川), Jia-Ji Zhao(赵嘉佶), Lu-Junyu Wang(王陆君瑜), Yun-Qi Fu(富云齐), Xue-Lei Liang(梁学磊), Hui-Ming Cheng(成会明), Wen-Cai Ren(任文才), Xiao-Song Wu(吴孝松), and Ning Kang(康宁). Chin. Phys. B, 2022, 31(9): 097404.
[12] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[13] Characteristics of piecewise linear symmetric tri-stable stochastic resonance system and its application under different noises
Gang Zhang(张刚), Yu-Jie Zeng(曾玉洁), and Zhong-Jun Jiang(蒋忠均). Chin. Phys. B, 2022, 31(8): 080502.
[14] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[15] Design optimization of broadband extreme ultraviolet polarizer in high-dimensional objective space
Shang-Qi Kuang(匡尚奇), Bo-Chao Li(李博超), Yi Wang(王依), Xue-Peng Gong(龚学鹏), and Jing-Quan Lin(林景全). Chin. Phys. B, 2022, 31(7): 077802.
No Suggested Reading articles found!