Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(2): 027306    DOI: 10.1088/1674-1056/22/2/027306
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Fano effect of a laterally coupled vertical triple quantum dot system

He Ze-Long (贺泽龙)a b, Lü Tian-Quan (吕天全)a, Zhang Di (张迪)c
a Center for Condensed-Matter Science and Technology, Harbin Institute of Technology, Harbin 150080, China;
b Department of Electronic Engineering, Heilongjiang Institute of Technology, Harbin 150050, China;
c School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China
Abstract  Using the nonequilibrium Green's function technique, electron transport through a laterally coupled vertical triple quantum dot is investigated. The conductance as a function of electron energy is numerically calculated. The evolution of the conductance strongly depends on the configuration of dot levels and interdot coupling strengths.
Keywords:  nonequilibrium Green's function      Fano effect      quantum dot      electron transport  
Received:  18 April 2012      Revised:  05 September 2012      Accepted manuscript online: 
PACS:  73.63.-b (Electronic transport in nanoscale materials and structures)  
  73.23.-b (Electronic transport in mesoscopic systems)  
  05.60.Gg (Quantum transport)  
Fund: Project supported by the Youth Foundation of Heilongjiang Province, China (Grant No. QC2009C41) and the Heilongjiang Provincial Natural Science Foundation, China (Grant No. F200939).
Corresponding Authors:  Lü Tian-Quan     E-mail:  ltq@hit.edu.cn

Cite this article: 

He Ze-Long (贺泽龙), Lü Tian-Quan (吕天全), Zhang Di (张迪) Fano effect of a laterally coupled vertical triple quantum dot system 2013 Chin. Phys. B 22 027306

[1] Huang R, Wu S Q and Yan C H 2010 Chin. Phys. B 19 077302
[2] Zhao H K 1997 Phys. Lett. A 226 105
[3] Xie Y, Duan S Q, Chu W D and Yang N 2011 Chin. Phys. B 19 117302
[4] Wen R, Zhang D P and Tian G S 2012 Chin. Phys. B 21 037401
[5] He Z L, Lü T Q, Li H and Yin H T 2006 Phys. Lett. A 360 199
[6] He Z L and Lü T Q 2012 Phys. Lett. A 376 2501
[7] Lü H F and Guo Y 2007 Phys. Rev. B 76 045120
[8] Gong W J, Zheng Y S, Liu Y, Kariuki F N and Lü T Q 2008 Phys. Lett. A 372 2934
[9] An X T and Liu J J 2008 Phys. Lett. A 372 6790
[10] Donarini A, Begemann G and Grifoni M 2010 Phys. Rev. B 82 125451
[11] Hatef A and Singh M R 2010 Phys. Rev. A 81 063816
[12] Malecki J and Affleck I 2010 Phys. Rev. B 82 165426
[13] Sun Q and Guo H 2001 Phys. Rev. B 64 153306
[14] Žitko R 2010 Phys. Rev. B 81 115316
[15] Fano U 1961 Phys. Rev. 124 1866
[16] Sun Q, Wang J and Guo H 2005 Phys. Rev. B 71 165310
[17] Lu H, Lü R and Zhu B 2006 Physica E 34 538
[18] Chi F and Zheng J 2008 Appl. Phys. Lett. 92 062106
[19] Kobayashi K, Aikawa H, Katsumoto S and Iye Y 2002 Phys. Rev. Lett. 88 256806
[20] Zacharia I G, Goldhaber-Gordon D, Granger G, Kastner M A and Khavin Y B 2001 Phys. Rev. B 64 155311
[21] Göres J, Goldhaber-Gordon D, Heemeyer S and Kastner M A 2000 Phys. Rev. B 62 2188
[22] Yanaka Y and Kawakami N 2005 Phys. Rev. B 72 085304
[23] Kubala B and Konig J 2002 Phys. Rev. B 65 245301
[24] Ding G H, Kim C K and Nahm K 2005 Phys. Rev. B 71 205313
[25] Lu H, Lü R and Zhu B 2005 Phys. Rev. B 71 235320
[26] Peng J, Wang B and Xing D Y 2005 Phys. Rev. B 71 214523
[27] Kang K and Cho S Y 2004 J. Phys.: Condens. Matter 16 117
[28] de Guevara M L L and Orellana P A 2006 Phys. Rev. B 73 205303
[29] Chen K and Chang C 2008 J. Appl. Phys. 103 07B708
[30] He Z L, Lü T Q, Cui L, Xue H J, Li L J and Yin H T 2011 Chin. Phys. B 20 117303
[31] He Z L, Lü T Q, Li H, Li L J, Cui L and Xue H J 2011 Phys. Scr. 84 035703
[32] Li Y 2007 J. Phys.: Condens. Matter 19 496219
[33] Jauho A P, Wingreen N S and Meir Y 1994 Phys. Rev. B 50 5528
[34] de Guevara M L L, Claro F and Orellana P A 2003 Phys. Rev. B 67 195335
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[3] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[4] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[5] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[6] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[7] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[8] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[9] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[10] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[11] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[12] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
[13] Chiral splitting of Kondo peak in triangular triple quantum dot
Yi-Ming Liu(刘一铭), Yuan-Dong Wang(王援东), and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(5): 057201.
[14] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[15] High-fidelity quantum sensing of magnon excitations with a single electron spin in quantum dots
Le-Tian Zhu(朱乐天), Tao Tu(涂涛), Ao-Lin Guo(郭奥林), and Chuan-Feng Li(李传锋). Chin. Phys. B, 2022, 31(12): 120302.
No Suggested Reading articles found!