CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Optically pumped GaN/AlGaN quantum well intersubband terahertz laser |
Fu Ai-Bing (傅爱兵), Hao Ming-Rui (郝明瑞), Yang Yao (杨耀), Shen Wen-Zhong (沈文忠), Liu Hui-Chun (刘惠春) |
Key Laboratory of Artificial Structures and Quantum Control (Minister of Education), Department of Physics, Shanghai Jiao Tong University, Shanghai 200240, China |
|
|
Abstract We propose an optically pumped nonpolar GaN/AlGaN quantum well (QW) active region design for terahertz (THz) lasing in the wavelength range of 30 μm~ 40 μm and operating at room temperature. The fast longitudinal optical (LO) phonon scattering in GaN/AlGaN QWs is used to depopulate the lower laser state, and more importantly, the large LO phonon energy is utilized to reduce the thermal population of the lasing states at high temperatures. The influences of temperature and pump intensity on gain and electron densities are investigated. Based on our simulations, we predict that with a sufficiently high pump intensity, a room temperature operated THz laser using a nonpolar GaN/AlGaN structure is realizable.
|
Received: 02 July 2012
Revised: 22 August 2012
Accepted manuscript online:
|
PACS:
|
68.65.Fg
|
(Quantum wells)
|
|
42.55.Px
|
(Semiconductor lasers; laser diodes)
|
|
61.72.uj
|
(III-V and II-VI semiconductors)
|
|
Fund: Project supported in part by the National Major Basic Research Program of China (Grant No. 2011CB925603) and the Shanghai Municipal Major Basic Research Project (Grant No. 09DJ1400102). |
Corresponding Authors:
Shen Wen-Zhong, Liu Hui-Chun
E-mail: wzshen@sjtu.edu.cn; h.c.liu@sjtu.edu.cn
|
Cite this article:
Fu Ai-Bing (傅爱兵), Hao Ming-Rui (郝明瑞), Yang Yao (杨耀), Shen Wen-Zhong (沈文忠), Liu Hui-Chun (刘惠春) Optically pumped GaN/AlGaN quantum well intersubband terahertz laser 2013 Chin. Phys. B 22 026803
|
[1] |
Williams B S 2007 Nature Photonics 1 517
|
[2] |
Kim S M, Hatami F, Harris J S, Kurian A W, Ford J, King D, Scalari G, Giovannini M, Hoyler N, Faist J and Harris G 2006 Appl. Phys. Lett. 88 153903
|
[3] |
Barbieri S, Alton J, Baker C, Lo T, Beere H and Ritchie D 2005 Opt. Express 13 6497
|
[4] |
Nguyen K L, Johns M L, Gladden L, Worrall C H, Alexander P, Beere H E, Pepper M, Ritchie D A, Alton J, Barbieri S and Linfield E H 2006 Opt. Express 14 2123
|
[5] |
Lee A W M, Williams B S, Kumar S, Hu Q and Reno J L 2006 IEEE Photon. Technol. Lett. 18 1415
|
[6] |
Kazarinov R and Suris R 1971 Sov. Phys. Semicond. 5 707
|
[7] |
Faist J, Capasso F, Sivco D L, Sirtori C, Hutchinson A L and Cho A Y 1994 Science 264 553
|
[8] |
Köler R, Tredicucci A, Beltram F, Beere H E, Linfield E H, Davies A G, Ritchie D A, Iotti R C and Rossi F 2002 Nature 417 156
|
[9] |
Luo H, Laframboise S R, Wasilewski Z R, Aers G C, Liu H C and Cao J C 2007 Appl. Phys. Lett. 90 041112
|
[10] |
Kumar S, Hu Q and Reno J L 2009 Appl. Phys. Lett. 94 131105
|
[11] |
Fathololoumi S, Dupont E, Chan C, Wasilewski Z, Laframboise S, Ban D, Mátyás A, Jirauschek C, Hu Q and Liu H 2012 Opt. Express 20 3866
|
[12] |
Williams B S, Callebaut H, Kumar S, Hu Q and Reno J L 2003 Appl. Phys. Lett. 82
|
[13] |
Jovanovi V, Indjin D, Ikoni Z and Harrison P 2004 Appl. Phys. Lett. 84 2995
|
[14] |
Liu H C, Song C Y, Wasilewski Z R, Spring-Thorpe A J, Cao J C, Dharma-Wardana C, Aers G C, Lockwood D J and Gupta J A 2003 Phys. Rev. Lett. 90 77402
|
[15] |
Xie G, Xu Edward, Niloufar Hashemi, Zhang B, Fred Y F and Wai T N 2012 Chin. Phys. B 21 086105
|
[16] |
Lü Y J, Lin Z J, Yu Y X, Meng L G, Cao Z F, Luan C B and Wang Z G 2012 Chin. Phys. B 21 097104
|
[17] |
Sun G, Soref R A and Khurgin J B 2005 Superlattices and Microstructures 37 107
|
[18] |
Waltereit P, Brandt O, Trampert A, Grahn H, Menniger J, Ramsteiner M, Reiche M and Ploog K 2000 Nature 406 865
|
[19] |
Craven M D, Lim S H, Wu F, Speck J S and DenBaars S P 2002 Appl. Phys. Lett. 81 1201
|
[20] |
Haskell B A, Wu F, Matsuda S, Craven M D, Fini P T, DenBaars S P, Speck J S and Nakamura S 2003 Appl. Phys. Lett. 83 1554
|
[21] |
Sun G and Khurgin J B 1993 IEEE J. Quantum Electron. 29 1104
|
[22] |
Iizuka N, Kaneko K, Suzuki N, Asano T, Noda S and Wada O 2000 Appl. Phys. Lett. 77 648
|
[23] |
Heber J, Gmachl C, Ng H and Cho A 2002 Appl. Phys. Lett. 81 1237
|
[24] |
Suzuki N and Iizuka N 1998 Jpn. J. Appl. Phys. 37 L369
|
[25] |
Jovanović V, Indjin D, Ikonić Z, Milanović V and Radovanović J 2002 Solid State Commun. 121 619
|
[26] |
Capasso F, Paiella R, Martini R, Colombelli R, Gmachl C, Myers T L, Taubman M S, Williams R M, Bethea C G, Unterrainer K, Hwang H Y, Sivco D L, Cho A Y, Sergent A M, Liu H C and Whittaker E A 2002 IEEE J. Quantum Electron. 38 511
|
[27] |
Barbieri S, Alton J, Beere H E, Fowler J, Linfield E H and Ritchie D A 2004 Appl. Phys. Lett. 85 1674
|
[28] |
Kumar S, Williams B S, Kohen S, Hu Q and Reno J L 2004 Appl. Phys. Lett. 84 2494
|
[29] |
Williams B S, Kumar S, Callebaut H, Hu Q and Reno J L 2003 Appl. Phys. Lett. 83 5142
|
[30] |
Hsu L and Walukiewicz W 1997 Physi. Rev. B 56 1520
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|