Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(12): 128202    DOI: 10.1088/1674-1056/21/12/128202
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Structural and magnetic properties of LiNi0.5Mn1.5O4 and LiNi0.5Mn1.5O4-δ spinels: A first-principles study

Xin Xiao-Gui (忻晓桂), Shen Jing-Qin (沈静琴), Shi Si-Qi (施思齐)
Department of Physics, Center for Optoelectronics Materials and Devices, Zhejiang Sci-Tech University, Xiasha College Park, Hangzhou 310018, China
Abstract  Structural and magnetic properties of LiNi0.5Mn1.5O4 and LiNi0.5Mn1.5O4-δ are investigated using density-functional theory calculations. Results indicate that nonstoichiometric LiNi0.5Mn1.5O4-δ and stoichiometric LiNi0.5Mn1.5O4 exhibit two different structures, i.e., the face-centred cubic (Fd-3m) and primitive, or simple, cubic (P4332) space groups, respectively. It is found that the magnetic ground state of LiNi0.5Mn1.5O4 (P4332 and Fd-3m) is ferrimagnetic state in which the Ni and Mn sublattices are ferromagnetically ordered along the [110] direction whereas they are antiferromagnetic with respect to each other. We demonstrate that it is the presence of O-vacancy in LiNi0.5Mn1.5O4-δ with the Fd-3m space group that results in its superior electronic conductivity compared with LiNi0.5Mn1.5O4 with the P4332 space group.
Keywords:  LiNi0.5Mn1.5O4      magnetic properties      crystal structures      first-principles calculations  
Received:  21 May 2012      Revised:  19 June 2012      Accepted manuscript online: 
PACS:  82.47.Aa (Lithium-ion batteries)  
  31.15.A- (Ab initio calculations)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51072183 and 50802089) and the Natural Science Foundation of Zhejiang Province, China (Grant No. Y4090280).
Corresponding Authors:  Shi Si-Qi     E-mail:  siqishihz@gmail.com

Cite this article: 

Xin Xiao-Gui (忻晓桂), Shen Jing-Qin (沈静琴), Shi Si-Qi (施思齐) Structural and magnetic properties of LiNi0.5Mn1.5O4 and LiNi0.5Mn1.5O4-δ spinels: A first-principles study 2012 Chin. Phys. B 21 128202

[1] Wu X L, Jiang L Y, Cao F F, Guo Y G and Wan L J 2009 Adv. Mater. 21 2710
[2] Shi S L, Liu Y G, Zhang J Y and Wang T H 2009 Chin. Phys. B 18 4564
[3] Hou X H, Hu S J, Li W S, Ru Q, Yu H W and Huang Z W 2008 Chin. Phys. B 17 3422
[4] Chen Y C, Xie K, Pan Y, Zheng C M and Wang H L 2011 Chin. Phys. B 20 028201
[5] Tarascon J M and Guyomard D 1993 Electrochim. Acta 38 1221
[6] Guyomard D and Tarascon J M 1994 Solid State Ionics 69 222
[7] Sun X, Yang X Q, Balasubramanian M, McBreen J, Xia Y and Sakai T 2002 J. Electrochem. Soc. 149 A842
[8] Saitoh M, Sano M, Fujita M, Sakata M, Takata M and Nishibori E 2004 J. Electrochem. Soc. 151 A17
[9] Tarascon J M, Mckinnon W R, Coowar F, Boowner T N, Amatucci G and Guyomard D 1997 J. Electrochem. Soc. 22 141
[10] Yamaguchi H, Yamada A and Uwe H 1998 Phys. Rev. B 58 8
[11] Choi W and Manthiram A 2006 J. Electrochem. Soc. 153 A1760
[12] Thackeray M M 1997 Prog. Solid State Chem. 25 1
[13] Arora P, Popov B and White R E 1998 J. Electrochem. Soc. 145 807
[14] Takahashi M, Yoshida T, Ichikawa A, Kitoh K, Katsukawa H, Zhang Q and Yoshio M 2006 Electrochim. Acta 51 5508
[15] Li G H, Ikuta H, Uchida T and Wakihara M 1996 J. Electrochem. Soc. 143 178
[16] Zhong Q, Bonakdarpour A, Zhang M, Gao Y and Dahn J R 1997 J. Electrochem. Soc. 144 205
[17] Ein-Eli Y, Howard W F, Lu S H, Mukerjee S, Mcbreen J, Vaughey J T and Thackeray M M 1998 J. Electrochem. Soc. 145 1238
[18] Kim J H, Myung S T and Sun Y K 2004 Electrochim. Acta 49 219
[19] Patoux S, Sannier L, Lignier H, Reynier Y, Bourbon C, Jouanneau S, Cras F L and Martinet S 2008 Electrochim. Acta 53 4137
[20] Wang L P, Li H, Huang X J and Baudrin E 2011 Solid State Ionics 193 32
[21] Blasse G 1966 J. Phys. Chem. Solids 27 383
[22] Goodenough J B 1963 Magnetism and the Chemical Bond (New York: Wiley)
[23] Branford W, Green M A and Neumann D A 2002 Chem. Mater. 14 1649
[24] Lee Y J, Eng C and Grey C P 2001 J. Electrochem. Soc. 148 A249
[25] Nakamura T, Yamada Y and Tabuchi M 2005 J. Appl. Phys. 98 093905
[26] Amdouni N, Zaghib K, Gendron F, Mauger A and Julien C M 2007 J. Magn. Magn. Mater. 309 100
[27] Kim J H, Myung S T, Yoon C S, Kang S G and Sun Y K 2004 Chem. Mater. 16 906
[28] Kunduraci M and Amatucci G G 2006 J. Electrochem. Soc. 153 A1345
[29] Kunduraci M, Al-Sharab J F and Amatucci G G 2006 Chem. Mater. 18 3585
[30] Ariyoshi K, Iwakoshi Y, Nakayama N and Ohzuku T 2004 J. Electrochem. Soc. 151 A296
[31] Shi S Q, Ouyang C Y, Wang D S, Chen L Q and Huang X J 2003 Solid State Commun. 126 531
[32] Biškup N, Martínez J L, Arroyo Y, de Dompablo M E, Díaz-Carrasco P and Morales J 2006 J. Appl. Phys. 100 093908
[33] Xia H, Meng Y S, Lu L and Ceder G 2007 J. Electrochem. Soc. 154 A737
[34] Blöchl P E 1994 Phys. Rev. B 50 17953
[35] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[36] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[37] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B 46 6671
[38] Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J and Sutton A P 1998 Phys. Rev. B 57 1505
[39] Zhou F, Kang K, Maxisch T, Ceder G and Morgan D 2004 Solid State Commun. 132 181
[40] Ouyang C Y, Du Y L, Shi S Q and Lei M S 2009 Phys. Lett. A 373 2796
[41] Methfessel M and Paxton A T 1989 Phys. Rev. B 40 3616
[42] Blöchl P E, Jepsen O and Andersen O K 1994 Phys. Rev. B 49 16223
[43] Takahashi K, Saitoh M, Sano M, Fujita M and Kifune K 2004 J. Electrochem. Soc. 151 A173
[44] Alcántara R, Jaraba M, Lavela P, Tirado J L, Zhecheva E and Stoyanova R 2004 Chem. Mater. 16 1573
[45] Wakihara M 2005 Electrochemistry (Tokyo, Jpn.) 73 328
[46] Ammundsen B, Roziére J and Islam M S 1997 J. Phys. Chem. B 101 8156
[47] Ma X H, Kang B and Ceder G 2010 J. Electrochem. Soc. 157 A925
[1] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[2] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[3] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[4] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[5] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[6] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[7] Preparation of PSFO and LPSFO nanofibers by electrospinning and their electronic transport and magnetic properties
Ying Su(苏影), Dong-Yang Zhu(朱东阳), Ting-Ting Zhang(张亭亭), Yu-Rui Zhang(张玉瑞), Wen-Peng Han(韩文鹏), Jun Zhang(张俊), Seeram Ramakrishna, and Yun-Ze Long(龙云泽). Chin. Phys. B, 2022, 31(5): 057305.
[8] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[9] Enhancement of magnetic and dielectric properties of low temperature sintered NiCuZn ferrite by Bi2O3-CuO additives
Jie Li(李颉), Bing Lu(卢冰), Ying Zhang(张颖), Jian Wu(武剑), Yan Yang(杨燕), Xue-Ning Han(韩雪宁), Dan-Dan Wen(文丹丹), Zheng Liang(梁峥), and Huai-Wu Zhang(张怀武). Chin. Phys. B, 2022, 31(4): 047502.
[10] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[11] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[12] A review on 3d transition metal dilute magnetic REIn3 intermetallic compounds
Xin-Peng Guo(郭新鹏), Yong-Quan Guo(郭永权), Lin-Han Yin(殷林瀚), and Qiang He(何强). Chin. Phys. B, 2022, 31(3): 037501.
[13] Tailoring the optical and magnetic properties of La-BaM hexaferrites by Ni substitution
Hafiz T. Ali, M. Ramzan, M Imran Arshad, Nicola A. Morley, M. Hassan Abbas, Mohammad Yusuf, Atta Ur Rehman, Khalid Mahmood, Adnan Ali, Nasir Amin, and M. Ajaz-un-Nabi. Chin. Phys. B, 2022, 31(2): 027502.
[14] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
[15] Manipulation of intrinsic quantum anomalous Hall effect in two-dimensional MoYN2CSCl MXene
Yezhu Lv(吕叶竹), Peiji Wang(王培吉), and Changwen Zhang(张昌文). Chin. Phys. B, 2022, 31(12): 127303.
No Suggested Reading articles found!