Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(10): 100310    DOI: 10.1088/1674-1056/21/10/100310
GENERAL Prev   Next  

Control of purity and entanglement for two spatially two-separated qubits via phase damping

A. S. F. Obadaa, H. A. Hessianb c, A. B. A. Mohamedb d, M. Hashemb
a Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt;
b Faculty of Science, Assiut University, Assiut, Egypt;
c Faculty of Science, Al-Baha University, Al-Baha, Saudi Arabia;
d Al-Aflaj Community College, Salman Bin Abdulaziz University Al-Aflaj, Saudi Arabia
Abstract  Control of purity and entanglement of two two-qubits dispersively coupled to a field with a reservoir are investigated. Initially the qubits are entangled, while the field is either in a coherent state or a statistical mixture of two coherent states. For an alternative entanglement measure we calculate the negativity of the eigenvalues of the partially transposed density matrix. A measure related to the mutual entropy, namely the index of entropy, is employed to measure the entanglement. Its results agree well with the negativity. It is found that the entanglement and purity have strong sensitivity to phase damping. The asymptotic behaviour of the states of the field, the two two-qubits, and the total system fall into mixed states.
Keywords:  entanglement      phase damping      purity      separated qubits  
Received:  11 December 2011      Revised:  18 May 2012      Accepted manuscript online: 
PACS:  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  03.65.Vf (Phases: geometric; dynamic or topological)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
Corresponding Authors:  M. Hashem     E-mail:  mostafa_qbit@yahoo.com

Cite this article: 

A. S. F. Obada, H. A. Hessian, A. B. A. Mohamed, M. Hashem Control of purity and entanglement for two spatially two-separated qubits via phase damping 2012 Chin. Phys. B 21 100310

[1] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[2] Bennett C H and Brassard G 1984 Proc. IEEE Int. Conf. on Computer, Systems, and Signal Processing (Bangalore) (New York: IEEE) p. 1759
[3] Ekert A K 1991 Phys. Rev. Lett. 67 661
[4] Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[5] Braunstein S L and Mann A 1995 Phys. Rev. A 51 R1727
[6] Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
[7] Mattle K, Weinfurter H, Kwiat P G and Zeilinger A 1996 Phys. Rev. Lett. 76 4656
[8] Bose S, Vedral V and Knight P L 1998 Phys. Rev. A 57 822
[9] Bose S, Vedral V and Knight P L 1999 Phys. Rev. A 60 194
[10] Briegel H J, Dur W, Cirac J I and Zoller P 1998 Phys. Rev. Lett. 81 5932
[11] Son W, Kim M S, Lee J and Ahn D 2002 J. Mod. Opt. 49 1739
[12] Zou J, Li J G, Shao B, Li J and Li Q S 2006 Phys. Rev. A 73 042319
[13] Cirac J I and Zoller P 1994 Phys. Rev. A 50 R2799
[14] Polzik E S 1999 Phys. Rev. A 59 4202
[15] Raimond J M, Brune M and Haroche S 2001 Rev. Mod. Phys. 73 565
[16] Hagley E, Matre X, Nogues G, Wunderlich C, Brune M, Raimond J M and Haroche S 1997 Phys. Rev. Lett. 79 1
[17] Barrett M D, Chiaverini J, Schaetz T, Britton J, Itano W M, Jost J D, Knill E, Langer C, Leibfried D and Ozeri R 2004 Nature 429 737
[18] Li S B and Xu J B 2005 Phys. Rev. A 72 022332
[19] Li G X, Allaart K and Lenstra D 2004 Phys. Rev. A 69 055802
[20] Gordon G, Kurizki G and Kofman A G 2006 Opt. Commun. 264 398
[21] Wang X Y, Du S D and Chen X S 2006 J. Phys. B: At. Mol. Opt. Phys. 39 3805
[22] El Naschie M S 2011 J. Quantum Inform. Sci. 1 50
[23] Bell J S 1987 Speakable and Unspeakable in Quantum Mechanics (Cambridge: Cambridge University Press) p. 65
[24] Hardy L 1993 Phys. Rev. Lett. 71 1665
[25] El Naschie M S 2004 Chaos, Solitons and Fractals 19 209
[26] El Naschie M S 2009 Chaos, Solitons and Fractals 41 2635
[27] El Naschie M S 2011 Nonlinear Sci. Lett. A 2 1
[28] Arevalo Aguilar L M 2006 Phys. Scr. 73 317
[29] Peres A 1996 Phys. Rev. Lett. 77 1413
[30] Horodecki P 1997 Phys. Lett. A 232 333
[31] Barnett S M and Phoenix S J D 1989 Phys. Rev. A 40 2404
[32] Lindblad G 1973 Commun. Math. Phys. 33 305
[33] Vedral V and Plenio M B 1998 Phys. Rev. A 57 1619
[34] Vedral V 2002 Rev. Mod. Phys. 74 197
[35] Knoll L and Orowski A 1995 Phys. Rev. A 51 1622
[36] Araki H and Lieb E 1970 Commun. Math. Phys. 18 160
[1] Unified entropy entanglement with tighter constraints on multipartite systems
Qi Sun(孙琪), Tao Li(李陶), Zhi-Xiang Jin(靳志祥), and Deng-Feng Liang(梁登峰). Chin. Phys. B, 2023, 32(3): 030304.
[2] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[3] Transformation relation between coherence and entanglement for two-qubit states
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(1): 010304.
[4] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[5] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[6] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[7] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
[8] Robustness of two-qubit and three-qubit states in correlated quantum channels
Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Chin. Phys. B, 2022, 31(7): 070302.
[9] Self-error-rejecting multipartite entanglement purification for electron systems assisted by quantum-dot spins in optical microcavities
Yong-Ting Liu(刘永婷), Yi-Ming Wu(吴一鸣), and Fang-Fang Du(杜芳芳). Chin. Phys. B, 2022, 31(5): 050303.
[10] Effects of colored noise on the dynamics of quantum entanglement of a one-parameter qubit—qutrit system
Odette Melachio Tiokang, Fridolin Nya Tchangnwa, Jaures Diffo Tchinda,Arthur Tsamouo Tsokeng, and Martin Tchoffo. Chin. Phys. B, 2022, 31(5): 050306.
[11] Improving the spectral purity of single photons by a single-interferometer-coupled microring
Yang Wang(王洋), Pingyu Zhu(朱枰谕), Shichuan Xue(薛诗川), Yingwen Liu(刘英文), Junjie Wu(吴俊杰), Xuejun Yang(杨学军), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(3): 034210.
[12] Entanglement spectrum of non-Abelian anyons
Ying-Hai Wu(吴英海). Chin. Phys. B, 2022, 31(3): 037302.
[13] Probabilistic resumable quantum teleportation in high dimensions
Xiang Chen(陈想), Jin-Hua Zhang(张晋华), and Fu-Lin Zhang(张福林). Chin. Phys. B, 2022, 31(3): 030302.
[14] Tetrapartite entanglement measures of generalized GHZ state in the noninertial frames
Qian Dong(董茜), R. Santana Carrillo, Guo-Hua Sun(孙国华), and Shi-Hai Dong(董世海). Chin. Phys. B, 2022, 31(3): 030303.
[15] Bright 547-dimensional Hilbert-space entangled resource in 28-pair modes biphoton frequency comb from a reconfigurable silicon microring resonator
Qilin Zheng(郑骑林), Jiacheng Liu(刘嘉成), Chao Wu(吴超), Shichuan Xue(薛诗川), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Xinyao Yu(于馨瑶), Miaomiao Yu(余苗苗), Mingtang Deng(邓明堂), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(2): 024206.
No Suggested Reading articles found!