|
|
Control of purity and entanglement for two spatially two-separated qubits via phase damping |
A. S. F. Obadaa, H. A. Hessianb c, A. B. A. Mohamedb d, M. Hashemb |
a Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt; b Faculty of Science, Assiut University, Assiut, Egypt; c Faculty of Science, Al-Baha University, Al-Baha, Saudi Arabia; d Al-Aflaj Community College, Salman Bin Abdulaziz University Al-Aflaj, Saudi Arabia |
|
|
Abstract Control of purity and entanglement of two two-qubits dispersively coupled to a field with a reservoir are investigated. Initially the qubits are entangled, while the field is either in a coherent state or a statistical mixture of two coherent states. For an alternative entanglement measure we calculate the negativity of the eigenvalues of the partially transposed density matrix. A measure related to the mutual entropy, namely the index of entropy, is employed to measure the entanglement. Its results agree well with the negativity. It is found that the entanglement and purity have strong sensitivity to phase damping. The asymptotic behaviour of the states of the field, the two two-qubits, and the total system fall into mixed states.
|
Received: 11 December 2011
Revised: 18 May 2012
Accepted manuscript online:
|
PACS:
|
03.67.Mn
|
(Entanglement measures, witnesses, and other characterizations)
|
|
03.65.Vf
|
(Phases: geometric; dynamic or topological)
|
|
03.65.Yz
|
(Decoherence; open systems; quantum statistical methods)
|
|
Corresponding Authors:
M. Hashem
E-mail: mostafa_qbit@yahoo.com
|
Cite this article:
A. S. F. Obada, H. A. Hessian, A. B. A. Mohamed, M. Hashem Control of purity and entanglement for two spatially two-separated qubits via phase damping 2012 Chin. Phys. B 21 100310
|
[1] |
Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
|
[2] |
Bennett C H and Brassard G 1984 Proc. IEEE Int. Conf. on Computer, Systems, and Signal Processing (Bangalore) (New York: IEEE) p. 1759
|
[3] |
Ekert A K 1991 Phys. Rev. Lett. 67 661
|
[4] |
Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
|
[5] |
Braunstein S L and Mann A 1995 Phys. Rev. A 51 R1727
|
[6] |
Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
|
[7] |
Mattle K, Weinfurter H, Kwiat P G and Zeilinger A 1996 Phys. Rev. Lett. 76 4656
|
[8] |
Bose S, Vedral V and Knight P L 1998 Phys. Rev. A 57 822
|
[9] |
Bose S, Vedral V and Knight P L 1999 Phys. Rev. A 60 194
|
[10] |
Briegel H J, Dur W, Cirac J I and Zoller P 1998 Phys. Rev. Lett. 81 5932
|
[11] |
Son W, Kim M S, Lee J and Ahn D 2002 J. Mod. Opt. 49 1739
|
[12] |
Zou J, Li J G, Shao B, Li J and Li Q S 2006 Phys. Rev. A 73 042319
|
[13] |
Cirac J I and Zoller P 1994 Phys. Rev. A 50 R2799
|
[14] |
Polzik E S 1999 Phys. Rev. A 59 4202
|
[15] |
Raimond J M, Brune M and Haroche S 2001 Rev. Mod. Phys. 73 565
|
[16] |
Hagley E, Matre X, Nogues G, Wunderlich C, Brune M, Raimond J M and Haroche S 1997 Phys. Rev. Lett. 79 1
|
[17] |
Barrett M D, Chiaverini J, Schaetz T, Britton J, Itano W M, Jost J D, Knill E, Langer C, Leibfried D and Ozeri R 2004 Nature 429 737
|
[18] |
Li S B and Xu J B 2005 Phys. Rev. A 72 022332
|
[19] |
Li G X, Allaart K and Lenstra D 2004 Phys. Rev. A 69 055802
|
[20] |
Gordon G, Kurizki G and Kofman A G 2006 Opt. Commun. 264 398
|
[21] |
Wang X Y, Du S D and Chen X S 2006 J. Phys. B: At. Mol. Opt. Phys. 39 3805
|
[22] |
El Naschie M S 2011 J. Quantum Inform. Sci. 1 50
|
[23] |
Bell J S 1987 Speakable and Unspeakable in Quantum Mechanics (Cambridge: Cambridge University Press) p. 65
|
[24] |
Hardy L 1993 Phys. Rev. Lett. 71 1665
|
[25] |
El Naschie M S 2004 Chaos, Solitons and Fractals 19 209
|
[26] |
El Naschie M S 2009 Chaos, Solitons and Fractals 41 2635
|
[27] |
El Naschie M S 2011 Nonlinear Sci. Lett. A 2 1
|
[28] |
Arevalo Aguilar L M 2006 Phys. Scr. 73 317
|
[29] |
Peres A 1996 Phys. Rev. Lett. 77 1413
|
[30] |
Horodecki P 1997 Phys. Lett. A 232 333
|
[31] |
Barnett S M and Phoenix S J D 1989 Phys. Rev. A 40 2404
|
[32] |
Lindblad G 1973 Commun. Math. Phys. 33 305
|
[33] |
Vedral V and Plenio M B 1998 Phys. Rev. A 57 1619
|
[34] |
Vedral V 2002 Rev. Mod. Phys. 74 197
|
[35] |
Knoll L and Orowski A 1995 Phys. Rev. A 51 1622
|
[36] |
Araki H and Lieb E 1970 Commun. Math. Phys. 18 160
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|