Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(3): 034210    DOI: 10.1088/1674-1056/ac3652
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Improving the spectral purity of single photons by a single-interferometer-coupled microring

Yang Wang(王洋), Pingyu Zhu(朱枰谕), Shichuan Xue(薛诗川), Yingwen Liu(刘英文),Junjie Wu(吴俊杰), Xuejun Yang(杨学军), and Ping Xu(徐平)
Institute for Quantum Information&State Key Laboratory of High Performance Computing, College of Computer Science and Technology, National University of Defense Technology, Changsha 410073, China
Abstract  We experimentally engineer a high-spectral-purity single-photon source using a single-interferometer-coupled silicon microring. By the reconfiguration of the interferometer, different coupling conditions can be obtained, corresponding to different quality factors for the pump and signal/idler. The ratio between the quality factor of the pump and signal/idler ranges from 0.29 to 2.57. By constructing the signal—idler joint spectral intensity, we intuitively demonstrate the spectral correlation of the signal and idler. As the ratio between the quality factor of the pump and signal/idler increases, the spectral correlation of the signal and idler decreases, i.e., the spectral purity of the signal/idler photons increases. Furthermore, time-integrated second-order correlation of the signal photons is measured, giving a value up to 94.95±3.46%. Such high-spectral-purity photons will improve the visibility of quantum interference and facilitate the development of on-chip quantum information processing.
Keywords:  spectral-purity      microring      asymmetric Mach—Zehnder interferometer  
Received:  22 September 2021      Revised:  01 November 2021      Accepted manuscript online:  04 November 2021
PACS:  42.82.-m (Integrated optics)  
  42.82.Et (Waveguides, couplers, and arrays)  
  42.65.-k (Nonlinear optics)  
  42.65.Wi (Nonlinear waveguides)  
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2019YFA0308700 and 2017YFA0303700) and the Open Funds from the State Key Laboratory of High Performance Computing of China (HPCL, National University of Defense Technology).
Corresponding Authors:  Ping Xu     E-mail:  pingxu520@nju.edu.cn

Cite this article: 

Yang Wang(王洋), Pingyu Zhu(朱枰谕), Shichuan Xue(薛诗川), Yingwen Liu(刘英文), Junjie Wu(吴俊杰), Xuejun Yang(杨学军), and Ping Xu(徐平) Improving the spectral purity of single photons by a single-interferometer-coupled microring 2022 Chin. Phys. B 31 034210

[1] Bennett C H and Brassard G 2014 Theoretical Computer Science 560 7
[2] Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod. Phys. 74 145
[3] Knill E, Laflamme R and Milburn G J 2001 Nature 409 46
[4] Browne D E and Rudolph T 2005 Phys. Rev. Lett. 95 010501
[5] Michler P, Kiraz A, Becher C, Schoenfeld W V, Petroff P M, Zhang L D, Hu E and Imamoglu A 2000 Science 290 5500
[6] Santori C, Pelton M, Solomon G, Dale Y and Yamamoto Y 2001 Phys. Rev. Lett. 86 1502
[7] Kuhn A, Hennrich M and Rempe G 2002 Phys. Rev. Lett. 89 067901
[8] McKeever J, Boca A, Boozer A D, Miller R, Buck J R, Kuzmich A and Kimble H J 2004 Science 303 1992
[9] Kurtsiefer C, Mayer S, Zarda P and Weinfurter H 2000 Phys. Rev. Lett. 85 290
[10] Engin E, Bonneau D, Natarajan C M, Clark A S, Tanner M G, Hadfield R H, Dorenbos S N, Zwiller V, Ohira K, Suzuki N, Yoshida H, Iizuka N, Ezaki M, O'Brien J L and Thompson M G 2013 Opt. Express 21 027826
[11] Spring J B, Mennea P L, Metcalf B J, Humphreys P C, Gates J C, Rogers H L, Söller C, Smith B J, Kolthammer W S, Smith P G R and Walmsley I A 2017 Optica 4 90
[12] Lu X Y, Li Q, Westly D A, Moille G, Singh A, Anant V and Srinivasan K 2019 Nat. Phys. 15 373
[13] Strain M J, Lacava C, Meriggi L, Cristiani I and Sorel M 2015 Opt. Lett. 40 1274
[14] Bristow A D, Rotenberg N and van Driel H M 2007 Appl. Phys. Lett. 90 191104
[15] Wu C, Liu Y W, Gu X W, Xue S C, Yu X X, Kong Y C, Qiang X G, Wu J J, Zhu Z H and Xu P 2019 Chin. Phys. B 28 104211
[16] Wu C, Liu Y W, Gu X W, Yu X X, Kong Y C, Wang Y, Qiang X G, Wu J J, Zhu Z H, Yang X J and Xu P 2019 Sci. China:Phys., Mech. Astron. 63 220362
[17] Vernon Z, Menotti M, Tison C C, Steidle J A, Fanto M L, Thomas P M, Preble S F, Smith A M, Alsing P M, Liscidini M and Sipe J E 2017 Opt. Lett. 42 3638
[18] Liu Y W, Wu C, Gu X W, Kong Y C, Yu X X, Ge R Y, Cai X L, Qiang X G, Wu J J, Yang X J and Xu P 2017 Opt. Lett. 45 73
[19] Zhu P Y, Liu Y W, Wu C, Xue S C, Yu X Y, Zheng Q L, Wang Y, Qiang X G, Wu J J and Xu P 2020 Chin. Phys. B 29 114201
[20] Helt L G, Yang Z S, Liscidini M and Sipe J E 2010 Opt. Lett. 35 3006
[21] Silverstone J W, Santagati R, Bonneau D, Strain M J, Sorel M, O'Brien J L and Thompson M G 2015 Nat. Commun. 6 7948
[22] Dai Z, Liu Y, Xu P, Xu W X, Yang X J and Wu J J 2020 Sci. China:Phys., Mech. Astron. 63 250311
[23] Gatti A, Corti T, Brambilla E and Horoshko D B 2012 Phys. Rev. A 86 053803
[24] Liscidini M and Sipe J E 2013 Phys. Rev. Lett. 111 193602
[1] High-performance and fabrication friendly polarization demultiplexer
Huan Guan(关欢), Yang Liu(刘阳), and Zhiyong Li (李智勇). Chin. Phys. B, 2022, 31(3): 034203.
[2] Bright 547-dimensional Hilbert-space entangled resource in 28-pair modes biphoton frequency comb from a reconfigurable silicon microring resonator
Qilin Zheng(郑骑林), Jiacheng Liu(刘嘉成), Chao Wu(吴超), Shichuan Xue(薛诗川), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Xinyao Yu(于馨瑶), Miaomiao Yu(余苗苗), Mingtang Deng(邓明堂), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(2): 024206.
[3] Bandwidth-tunable silicon nitride microring resonators
Jiacheng Liu(刘嘉成), Chao Wu(吴超), Gongyu Xia(夏功榆), Qilin Zheng(郑骑林), Zhihong Zhu(朱志宏), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(1): 014201.
[4] Near 100% spectral-purity photons from reconfigurable micro-rings
Pingyu Zhu(朱枰谕), Yingwen Liu(刘英文), Chao Wu(吴超), Shichuan Xue(薛诗川), Xinyao Yu(于馨瑶), Qilin Zheng(郑骑林), Yang Wang(王洋), Xiaogang Qiang(强晓刚), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2020, 29(11): 114201.
[5] Highly sensitive digital optical sensor with large measurement range based on the dual-microring resonator with waveguide-coupled feedback
Xiang Xing-Ye (向星烨), Wang Kui-Ru (王葵如), Yuan Jin-Hui (苑金辉), Jin Bo-Yuan (晋博源), Sang Xin-Zhu (桑新柱), Yu Chong-Xiu (余重秀). Chin. Phys. B, 2014, 23(3): 034206.
[6] Modeling and analysis of silicon-on-insulator elliptical microring resonators for future high-density integrated photonic circuits
Xiong Kang(熊康), Xiao Xi(肖希), Hu Ying-Tao(胡应涛), Li Zhi-Yong(李智勇), Chu Tao(储涛), Yu Yu-De(俞育德), and Yu Jin-Zhong(余金中) . Chin. Phys. B, 2012, 21(7): 074203.
[7] Compact temperature-insensitive modulator based on silicon microring assistant Mach–Zehnder interferometer
Zhang Xue-Jian (张雪键), Feng Xue (冯雪), Zhang Deng-Ke (张登科), Huang Yi-Dong (黄翊东). Chin. Phys. B, 2012, 21(12): 124203.
[8] A large bandwidth photonic delay line using passive cascaded silicon-on-insulator microring resonators
Hu Ying-Tao(胡应涛), Xiao Xi(肖希), Li Zhi-Yong(李智勇), Li Yun-Tao(李运涛), Fan Zhong-Chao(樊中朝), Han Wei-Hua(韩伟华), Yu Yu-De(俞育德), and Yu Jin-Zhong(余金中). Chin. Phys. B, 2011, 20(7): 074208.
[9] Design, fabrication and characterization of a high-performance microring resonator in silicon-on-insulator
Huang Qing-Zhong(黄庆忠), Yu Jin-Zhong(余金中), Chen Shao-Wu(陈少武), Xu Xue-Jun(徐学俊), Han Wei-Hua(韩伟华), and Fan Zhong-Chao(樊中朝) . Chin. Phys. B, 2008, 17(7): 2562-2566.
No Suggested Reading articles found!