Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(10): 100401    DOI: 10.1088/1674-1056/21/10/100401
GENERAL Prev   Next  

Cosmological application on five-dimensional teleparallel theory equivalent to general relativity

Gamal G. L. Nasheda b c
a Mathematics Department, Faculty of Science, King Faisal University, P. O. Box 380, Al-Ahsaa 31982, the Kingdom of Saudi Arabia;
b Mathematics Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt;
c Center for Theoretical Physics, British University of Egypt, Sherouk City 11837, P. O. Box 43, Egypt
Abstract  A theory of (4+1)-dimensional gravity has been developed on the basis of which equivalent to the theory of general relativity by teleparallel. The fundamental gravitational field variables are the 5-dimensional (5D) vector fields (pentad), defined globally on a manifold M, and gravity is attributed to the torsion. The Lagrangian density is quadratic in the torsion tensor. We then apply the field equations to two different homogenous and isotropic geometric structures which give the same line element, i.e., FRW in five dimensions. The cosmological parameters are calculated and some cosmological problems are discussed.
Keywords:  5D teleparallel equivalent of general relativity      5D solutions      cosmological parameters      cosmological problems  
Received:  08 February 2012      Revised:  08 April 2012      Accepted manuscript online: 
PACS:  04.20.Jb (Exact solutions)  
  04.50.-h (Higher-dimensional gravity and other theories of gravity)  
  04.50.Gh (Higher-dimensional black holes, black strings, and related objects)  
  04.50.Kd (Modified theories of gravity)  
Corresponding Authors:  Gamal G. L. Nashed     E-mail:  nashed@bue.edu.eg

Cite this article: 

Gamal G. L. Nashed Cosmological application on five-dimensional teleparallel theory equivalent to general relativity 2012 Chin. Phys. B 21 100401

[1] Myers R C and Perry M J 1986 Ann. Phys. (NY) 172 304
[2] Emparan R and Reall H S 2002 Phys. Rev. Lett. 88 101101
[3] Elvang H, Emparan R, Mateos D and Reall H S 2004 Phys. Rev. Lett. 93 211302
[4] Dimopoulos S and Landsberg G 2001 Phys. Rev. Lett. 87 161602
[5] Harmark T 2004 Phys. Rev. D 70 124002
[6] Harmark T and Olesen P 2005 Phys. Rev. D 72 124017
[7] Aliev A N 2006 Mod. Phys. Lett. A 21 751
[8] Wu S 2008 Phys. Rev. Lett. 100 121301
[9] Giddings S B and Thomas S D 2002 Phys. Rev. D 65 056010
[10] Kanti P 2004 Int. J. Mod. Phys. A 19 4899
[11] Sorkin R 1983 Phys. Rev. Lett. 51 87
[12] Gross D J and Perry M J 1983 Nucl. Phys. B 311 739
[13] Davidson D and Owen D 1985 Phys. Lett. B 155 247
[14] Wesson P S 1999 Space-Time-Matter (Singapore: World Scientific) pp. 177-179
[15] Wesson P S, Mashhoon B and Liu H 1997 Mod. Phys. Lett. A 12 2309
[16] Ernst F J 1968 Phys. Rev. 167 1175
[17] Ernst F J 1968 Phys. Rev. 168 1415
[18] Stephani H, Kramer D, MacCallum M, Hoenselaers C and Herlt E 2003 Exact Solutions of Einsteins Field Equations 2nd edn. (Cambridge: Cambridge University Press)
[19] Kerr R P 1963 Phys. Rev. Lett. 11 237
[20] Newman E T, Couch E, Chinapared K, Exton A, Prakash A and Torrence R 1965 J. Math. Phys. 6 918
[21] Pomeransky A A and Senkov R A hep-th/0612005
[22] Lü H, Mei J W and Pope C N 2009 Nucl. Phys. B 806 436
[23] Ortín T 2004 Gravity and Strings (Cambridge: Cambridge University Press) p. 166
[24] Mφller C 1962 "Tetrad Fields and Conservation Laws in General Relativity", Proceedings of the International School of Physics Enrico Fermi ed. Mφller C (London: Academic Press)
[25] Mφller C 1962 "Conservation Laws in the Tetrad Theory of Gravitation", Proceedings of the Conference on Theory of Gravitation (Paris: Gauthier-Villars and Warszawa: PWN-Polish Scientific Publishers, 1964) (NORDITA Publications No. 136)
[26] Pellegrini C and Plebański J 1963 Mat. Fys. Scr. Dan. Vid. Selsk. 2 No. 4
[27] Hehl F W 1980 Proceedings of the 6th School of Cosmology and Gravitation on Spin, Torsion, Rotation, and Supergravity, Erice, 1979, ed. P. G. Bergmann and V. de Sabbata (New York: Plenum)
[28] Hehl F W, McCrea J D, Mielke E M and Neeman Y 1995 Phys. Rep. 258 1
[29] Hayashi K 1977 Phys. Lett. B 69 441
[30] Hayashi K and Shirafuji T 1979 Phys. Rev. D 19 3524
[31] Hayashi K and Shirafuji T 1981 Phys. Rev. D 24 3312
[32] Blagojević M and Vasilić M 1988 Class. Quantum Grav. 5 1241
[33] Kawai T 2000 Phys. Rev. D 62 104014
[34] Kawai T, Shibata K and Tanaka I 2000 Prog. Theor. Phys. 104 505
[35] Dirac P A M 1964 Lectures on Quantum Mechanics (Belfer Gradute School of Science) Monographs Series No. 2 (New York: Yeshiva University Press)
[36] de Andrade V C, Guillen L C T and Pereira J G 2000 Phys. Rev. Lett. 84 4533
[37] de Andrade V C, Guillen L C T and Pereira J G 2001 Phys. Rev. D 64 027502
[38] de Andrade V C and Pereira J G 1999 Int. J. Mod. Phys. D 8 141
[39] de Andrade V C and Pereira J G 1998 Gen. Rel. Grav. 30 263
[40] de Andrade V C and Pereira J G 1997 Phys. Rev. D 56 4689
[41] Calcada M and Pereira J G 2002 Phys. Rev. D 66 044001
[42] Maluf J W and da Rocha-Neto J F 1999 Gen. Rel. Grav. 31 173
[43] Maluf J W, Matins E F and Kneip A 1996 J. Math. Phys. 37 6302
[44] Maluf J W 1996 Gen. Rel. Grav. 28 1361
[45] Maluf J W 1996 J. Math. Phys. 37 6293
[46] Maluf J W 1995 J. Math. Phys. 36 4242
[47] Maluf J W 1994 J. Math. Phys. 35 335
[48] Maluf J W, da Rocha-neto J F, Toribio T M L and Castello-Branco K H 2002 Phys. Rev. D 65 124001
[49] Sharif M 2011 Gen. Rel. Grav. 43 2885
[50] Sahni V, et al. 2003 JETP. Lett. 77 201
[1] Method of determining cosmological parameter ranges with samples of candles with an intrinsic distribution
Qin Yi-Ping (覃一平), Zhang Bin-Bin (张彬彬), Dong Yun-Ming (董云明), Zhang Fu-Wen (张富文), Li Huai-Zhen (李怀珍), Jia Lan-Wei (贾兰伟), Mao Li-Sheng (毛李胜), Lu Rui-Jing (陆睿静), Yi Ting-Feng (易庭丰), Cui Xiao-Hong (崔晓红), Zhang Zhi-Bin (张志彬). Chin. Phys. B, 2006, 15(7): 1645-1652.
No Suggested Reading articles found!