|
|
Vertical assembly of carbon nanotubes for via interconnects |
Wei Qin-Qin (魏芹芹)a b, Wei Zi-Jun (魏子钧)a, Ren Li-Ming (任黎明)a, Zhao Hua-Bo (赵华波)a, Ye Tian-Yang (叶天扬)a, Shi Zu-Jin (施祖进)c, Fu Yun-Yi (傅云义)a, Zhang Xing (张兴)a, Huang Ru (黄如)a |
a Institute of Microelectronics, Peking University, Beijing 100871, China;
b School of Electrical and Electronic Engineering, Shandong University of Technology, Zibo 255049, China;
c College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China |
|
|
Abstract The via interconnects are key components in ultra-large scale integrated circuits (ULSI). This paper deals with a new method to create single-walled carbon nanotubes (SWNTs) via interconnects using alternating dielectrophoresis (DEP). Carbon nanotubes are vertically assembled in the microscale via-holes successfully at room temperature under ambient condition. The electrical evaluation of the SWNT vias reveals that our DEP assembly technique is highly reliable and the success rate of assembly can be as high as 90%. We also propose and test possible approaches to reducing the contact resistance between CNT vias and metal electrodes.
|
Received: 05 April 2012
Revised: 16 April 2012
Accepted manuscript online:
|
PACS:
|
81.05.uj
|
(Diamond/nanocarbon composites)
|
|
85.40.Ls
|
(Metallization, contacts, interconnects; device isolation)
|
|
87.50.ch
|
(Electrophoresis/dielectrophoresis and other mechanical effects)
|
|
73.63.-b
|
(Electronic transport in nanoscale materials and structures)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 60625403, 60925015, and 61076069), the National Basic Research Program of China (Grant Nos. 2011CBA00600 and 2011CBA00601), and the Instrumental Analysis Fund of Peking University, China. |
Corresponding Authors:
Fu Yun-Yi
E-mail: yyfu@pku.edu.cn
|
Cite this article:
Wei Qin-Qin (魏芹芹), Wei Zi-Jun (魏子钧), Ren Li-Ming (任黎明), Zhao Hua-Bo (赵华波), Ye Tian-Yang (叶天扬), Shi Zu-Jin (施祖进), Fu Yun-Yi (傅云义), Zhang Xing (张兴), Huang Ru (黄如) Vertical assembly of carbon nanotubes for via interconnects 2012 Chin. Phys. B 21 088103
|
[1] |
Srivastava N and Banerjee K 2004 TMSJ. Mater. 56 30
|
[2] |
Steinhogl W, Schindler G and Engelhardt M 2002 Phys. Rev. 66 075414
|
[3] |
Ryu C, Kwon K W, Loke A L S, Lee H, Nogami T, Dubin V M, Kavari R A, Ray G W and Wong S S 1999 IEEE Trans. Electron Dev. 46 1113
|
[4] |
Close G F, Yasuda S, Paul B, Fujita S and Philip Wong H S 2009 IEEE Trans. Electron Dev. 56 43
|
[5] |
Park J Y, Rosenblatt S, Yaish Y, Sazonova V, Üstünel H, Braig S, Arias T A, Brouwer P W and McEuen P L 2004 Nano Lett. 4 517
|
[6] |
Wei B Q, Vajtai R and Ajayan P M 2001 Appl. Phys. Lett. 79 1172
|
[7] |
Berber S, Kwon Y K and Tománe K D 2000 Phys. Rev. Lett. 84 4613
|
[8] |
Chen X Y, Akinwande D, Lee K J, Close G F, Yasuda S, Paul B C, Fujita S, Kong J and Philip Wong H S 2010 IEEE Trans. Electron Dev. 57 43
|
[9] |
http://en.wikipedia.org/wiki/Dielectrophoresis
|
[10] |
Yamamoto K, Akita S and Nakayama Y 1998 J. Phys. D: Appl. Phys. 31 34
|
[11] |
Stokes P and Khondaker S I 2008 Nanotechnology 17 175202
|
[12] |
Stokes P and Khondaker S I 2010 Appl. Phys. Lett. 96 083110
|
[13] |
Krupke R, Hennrich F, Weber H B, Beckmann D, Hampe O, Malik S, Kappes M and Lohneysen H 2003 Appl. Phys. A 76 397
|
[14] |
Krupke R, Hennrich F, Lohneysen H and Kappes M 2003 Science 301 344
|
[15] |
Gultepe E, Nagesha D, Casse B D F, Selvarasah S, Busnaina A and Sridhar S 2008 Nanotechnology 19 455309
|
[16] |
Peng N, Zhang Q and Sun Y S 2008 Int. J. Nanomanufacturing 2 50
|
[17] |
Wei Q Q, Guo A, Chai Y, Jin Z, Li Y, Shi Z J, Chan P C H, Fu Y Y, Huang R and Zhang X 2010ICSICT1259
|
[18] |
Matsuda Y, Deng W Q and Goddard W A 2010 J. Phys. Chem. C 114 17845
|
[19] |
Tao Y T 1993 J. Am. Chem. Soc. 115 4350
|
[20] |
Guo A, Fu Y Y, Liu J, Guan L H, Shi Z J, Gu Z N, Huang R and Zhang X 2006 J. Phys. Chem. B 110 9923
|
[21] |
Woo Y S, Duesberg G S and Roth S 2007 Nanotechnology 18 095203
|
[22] |
Ferrier M, Kasumov A, Deblock R, Guéron S and Bouchiat C H 2009 R. Physique 10 252
|
[23] |
Vijayaraghavan A, Blatt S, Weissenberger D, Oron-Carl M, Hennrich F, Gerthsen D, Hahn H and Krupke R 2007 Nano Lett. 7 1556
|
[24] |
Nihey F, Ichihashi T, Yudasaka M and Iijima S 2001 AIP Conf. Proc. 590 137
|
[25] |
Dresselhaus M S, Dresselhaus G, Saito R and Jorio A 2005 Phys. Rep. 409 47
|
[26] |
Lim S C, Jang J H, Bae D J, Han G H, Lee S, Yeo I S and Lee Y H 2009 Appl. Phys. Lett. 95 264103
|
[27] |
Xu H, Chen L, Hu L and Zhitenev N 2010 Appl. Phys. Lett. 97 143116
|
[28] |
Dockendorf C P R, Steinlin M, Poulikakos D and Choi T Y 2007 Appl. Phys. Lett. 90 193116
|
[29] |
Lee J O, Park C, Kim J J, Kim J, Park J W and Yoo K H 2000 J. Phys. D: Appl. Phys. 33 1953
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|